4,610 research outputs found

    Uncovering Causality from Multivariate Hawkes Integrated Cumulants

    Get PDF
    We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database

    Statistically Motivated Second Order Pooling

    Get PDF
    Second-order pooling, a.k.a.~bilinear pooling, has proven effective for deep learning based visual recognition. However, the resulting second-order networks yield a final representation that is orders of magnitude larger than that of standard, first-order ones, making them memory-intensive and cumbersome to deploy. Here, we introduce a general, parametric compression strategy that can produce more compact representations than existing compression techniques, yet outperform both compressed and uncompressed second-order models. Our approach is motivated by a statistical analysis of the network's activations, relying on operations that lead to a Gaussian-distributed final representation, as inherently used by first-order deep networks. As evidenced by our experiments, this lets us outperform the state-of-the-art first-order and second-order models on several benchmark recognition datasets.Comment: Accepted to ECCV 2018. Camera ready version. 14 page, 5 figures, 3 table

    Learning Internal Representations of 3D Transformations from 2D Projected Inputs

    Full text link
    When interacting in a three dimensional world, humans must estimate 3D structure from visual inputs projected down to two dimensional retinal images. It has been shown that humans use the persistence of object shape over motion-induced transformations as a cue to resolve depth ambiguity when solving this underconstrained problem. With the aim of understanding how biological vision systems may internally represent 3D transformations, we propose a computational model, based on a generative manifold model, which can be used to infer 3D structure from the motion of 2D points. Our model can also learn representations of the transformations with minimal supervision, providing a proof of concept for how humans may develop internal representations on a developmental or evolutionary time scale. Focused on rotational motion, we show how our model infers depth from moving 2D projected points, learns 3D rotational transformations from 2D training stimuli, and compares to human performance on psychophysical structure-from-motion experiments
    • …
    corecore