8,957 research outputs found

    Visual Spike-based Convolution Processing with a Cellular Automata Architecture

    Get PDF
    this paper presents a first approach for implementations which fuse the Address-Event-Representation (AER) processing with the Cellular Automata using FPGA and AER-tools. This new strategy applies spike-based convolution filters inspired by Cellular Automata for AER vision processing. Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. AER is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution.Ministerio de Educación y Ciencia TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    The Kinetic Basis of Self-Organized Pattern Formation

    Full text link
    In his seminal paper on morphogenesis (1952), Alan Turing demonstrated that different spatio-temporal patterns can arise due to instability of the homogeneous state in reaction-diffusion systems, but at least two species are necessary to produce even the simplest stationary patterns. This paper is aimed to propose a novel model of the analog (continuous state) kinetic automaton and to show that stationary and dynamic patterns can arise in one-component networks of kinetic automata. Possible applicability of kinetic networks to modeling of real-world phenomena is also discussed.Comment: 8 pages, submitted to the 14th International Conference on the Synthesis and Simulation of Living Systems (Alife 14) on 23.03.2014, accepted 09.05.201

    The barrel cortex—integrating molecular, cellular and systems physiology

    Get PDF
    A challenge for neurobiology is to integrate information across many levels of research, ranging from behaviour and neuronal networks to cells and molecules. The rodent whisker signalling pathway to the primary somatosensory neocortex with its remarkable somatotopic barrel map is emerging as a key system for such integrative studie

    Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits

    Get PDF
    Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP ("kink") was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.Comment: 34 pages, 9 figure

    Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.

    Get PDF
    Biological systems interact with nanostructured materials on a sub-cellular level. These interactions may govern cell behaviour and the precise control of a nanomaterial's structure and surface chemistry allow for a high degree of tunability to be achieved. Cells are surrounded by an extra-cellular matrix with nano-topographical properties. Diamond based materials, and specifically nanostructured diamond has attracted much attention due to its extreme electrical and mechanical properties, chemical inertness and biocompatibility. Here the interaction of nanodiamond monolayers with human Neural Stem Cells (hNSCs) has been investigated. The effect of altering surface functionalisation of nanodiamonds on hNSC adhesion and proliferation has shown that confluent cellular attachment occurs on oxygen terminated nanodiamonds (O-NDs), but not on hydrogen terminated nanodiamonds (H-NDs). Analysis of H and O-NDs by Atomic Force Microscopy, contact angle measurements and protein adsorption suggests that differences in topography, wettability, surface charge and protein adsorption of these surfaces may underlie the difference in cellular adhesion of hNSCs reported here
    corecore