71 research outputs found

    Shortest Reconfiguration of Colorings Under Kempe Changes

    Get PDF
    International audienc

    Kempe equivalence of 44-critical planar graphs

    Full text link
    Answering a question of Mohar from 2007, we show that for every 44-critical planar graph, its set of 44-colorings is a Kempe class.Comment: 7 pages, 2 figures; fixed some typo

    Reconfiguration of Colorings in Triangulations of the Sphere

    Get PDF
    In 1973, Fisk proved that any 4-coloring of a 3-colorable triangulation of the 2-sphere can be obtained from any 3-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there exists a 4-coloring that cannot be obtained from any 3-coloring. In this paper, we present a linear-time checkable characterization of a 4-coloring of a 3-colorable triangulation of the 2-sphere that can be obtained from a 3-coloring by a sequence of recoloring operations at single vertices. In addition, we develop a quadratic-time algorithm to find such a recoloring sequence if it exists; our proof implies that we can always obtain a quadratic length recoloring sequence. We also present a linear-time checkable criterion for a 3-colorable triangulation of the 2-sphere that all 4-colorings can be obtained from a 3-coloring by such a sequence. Moreover, we consider a high-dimensional setting. As a natural generalization of our first result, we obtain a polynomial-time checkable characterization of a k-coloring of a (k-1)-colorable triangulation of the (k-2)-sphere that can be obtained from a (k-1)-coloring by a sequence of recoloring operations at single vertices and the corresponding algorithmic result. Furthermore, we show that the problem of deciding whether, for given two (k+1)-colorings of a (k-1)-colorable triangulation of the (k-2)-sphere, one can be obtained from the other by such a sequence is PSPACE-complete for any fixed k ? 4. Our results above can be rephrased as new results on the computational problems named k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph, which are fundamental problems in the field of combinatorial reconfiguration

    The square of a planar cubic graph is 77-colorable

    Get PDF
    We prove the conjecture made by G.Wegner in 1977 that the square of every planar, cubic graph is 77-colorable. Here, 77 cannot be replaced by 66

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Distributed Recoloring of Interval and Chordal Graphs

    Get PDF

    Approximation schemes for randomly sampling colorings

    Get PDF
    Graph colouring is arguably one of the most important issues in Graph Theory. However, many of the questions that arise in the area such as the chromatic number problem or counting the number of proper colorings of a graph are known to be hard. This is the reason why approximation schemes are considered. In this thesis we consider the problem of approximate sampling a proper coloring at random. Among others, approximate samplers yield approximation schemes for the problem of counting the number of colourings of a graph. These samplers are based in Markov chains, and the main requirement of these chains is to mix rapidly, namely in time polynomial in the number of vertices. Two main examples are the Glauber and the flip dynamics. In the project we study under which conditions these chains mix rapidly and hence under which conditions there exist efficient samplers
    • …
    corecore