29,545 research outputs found

    Sizing the length of complex networks

    Full text link
    Among all characteristics exhibited by natural and man-made networks the small-world phenomenon is surely the most relevant and popular. But despite its significance, a reliable and comparable quantification of the question `how small is a small-world network and how does it compare to others' has remained a difficult challenge to answer. Here we establish a new synoptic representation that allows for a complete and accurate interpretation of the pathlength (and efficiency) of complex networks. We frame every network individually, based on how its length deviates from the shortest and the longest values it could possibly take. For that, we first had to uncover the upper and the lower limits for the pathlength and efficiency, which indeed depend on the specific number of nodes and links. These limits are given by families of singular configurations that we name as ultra-short and ultra-long networks. The representation here introduced frees network comparison from the need to rely on the choice of reference graph models (e.g., random graphs and ring lattices), a common practice that is prone to yield biased interpretations as we show. Application to empirical examples of three categories (neural, social and transportation) evidences that, while most real networks display a pathlength comparable to that of random graphs, when contrasted against the absolute boundaries, only the cortical connectomes prove to be ultra-short

    Exploring complex networks via topological embedding on surfaces

    Full text link
    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, characterize and simulate networks with a broad range of properties. Remarkably, the study of topologically embedded graphs is non-restrictive because any network can be embedded on a surface with sufficiently high genus. The local properties of the network are affected by the surface genus which, for example, produces significant changes in the degree distribution and in the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwoveness, changing the scaling properties from large-world-kind (small genus) to small- and ultra-small-world-kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description. Within such a framework, we study the properties of topologically-embedded graphs at high and low `temperatures' observing the formation of increasingly regular structures by cooling the system. We show that the cooling dynamics is strongly affected by the surface genus with the manifestation of a glassy-like freezing transitions occurring when the amount of topological disorder is low.Comment: 18 pages, 7 figure

    Fractal and Transfractal Recursive Scale-Free Nets

    Full text link
    We explore the concepts of self-similarity, dimensionality, and (multi)scaling in a new family of recursive scale-free nets that yield themselves to exact analysis through renormalization techniques. All nets in this family are self-similar and some are fractals - possessing a finite fractal dimension - while others are small world (their diameter grows logarithmically with their size) and are infinite-dimensional. We show how a useful measure of "transfinite" dimension may be defined and applied to the small world nets. Concerning multiscaling, we show how first-passage time for diffusion and resistance between hub (the most connected nodes) scale differently than for other nodes. Despite the different scalings, the Einstein relation between diffusion and conductivity holds separately for hubs and nodes. The transfinite exponents of small world nets obey Einstein relations analogous to those in fractal nets.Comment: Includes small revisions and references added as result of readers' feedbac

    Structures in supercritical scale-free percolation

    Get PDF
    Scale-free percolation is a percolation model on Zd\mathbb{Z}^d which can be used to model real-world networks. We prove bounds for the graph distance in the regime where vertices have infinite degrees. We fully characterize transience vs. recurrence for dimension 1 and 2 and give sufficient conditions for transience in dimension 3 and higher. Finally, we show the existence of a hierarchical structure for parameters where vertices have degrees with infinite variance and obtain bounds on the cluster density.Comment: Revised Definition 2.5 and an argument in Section 6, results are unchanged. Correction of minor typos. 29 pages, 7 figure

    Scale-Free Networks are Ultrasmall

    Full text link
    We study the diameter, or the mean distance between sites, in a scale-free network, having N sites and degree distribution p(k) ~ k^-a, i.e. the probability of having k links outgoing from a site. In contrast to the diameter of regular random networks or small world networks which is known to be d ~ lnN, we show, using analytical arguments, that scale free networks with 2<a<3 have a much smaller diameter, behaving as d ~ lnlnN. For a=3, our analysis yields d ~ lnN/lnlnN, as obtained by Bollobas and Riordan, while for a>3, d ~ lnN. We also show that, for any a>2, one can construct a deterministic scale free network with d ~ lnlnN, and this construction yields the lowest possible diameter.Comment: Latex, 4 pages, 2 eps figures, small corrections, added explanation

    Typical distances in a geometric model for complex networks

    Get PDF
    We study typical distances in a geometric random graph on the hyperbolic plane. Introduced by Krioukov et al.~\cite{ar:Krioukov} as a model for complex networks, NN vertices are drawn randomly within a bounded subset of the hyperbolic plane and any two of them are joined if they are within a threshold hyperbolic distance. With appropriately chosen parameters, the random graph is sparse and exhibits power law degree distribution as well as local clustering. In this paper we show a further property: the distance between two uniformly chosen vertices that belong to the same component is doubly logarithmic in NN, i.e., the graph is an ~\emph{ultra-small world}. More precisely, we show that the distance rescaled by loglogN\log \log N converges in probability to a certain constant that depends on the exponent of the power law. The same constant emerges in an analogous setting with the well-known \emph{Chung-Lu} model for which the degree distribution has a power law tail.Comment: 38 page
    corecore