95,191 research outputs found

    The Randic index and the diameter of graphs

    Get PDF
    The {\it Randi\'c index} R(G)R(G) of a graph GG is defined as the sum of 1/\sqrt{d_ud_v} over all edges uvuv of GG, where dud_u and dvd_v are the degrees of vertices uu and v,v, respectively. Let D(G)D(G) be the diameter of GG when GG is connected. Aouchiche-Hansen-Zheng conjectured that among all connected graphs GG on nn vertices the path PnP_n achieves the minimum values for both R(G)/D(G)R(G)/D(G) and R(G)D(G)R(G)- D(G). We prove this conjecture completely. In fact, we prove a stronger theorem: If GG is a connected graph, then R(G)(1/2)D(G)21R(G)-(1/2)D(G)\geq \sqrt{2}-1, with equality if and only if GG is a path with at least three vertices.Comment: 17 pages, accepted by Discrete Mathematic

    Variants of Plane Diameter Completion

    Get PDF
    The {\sc Plane Diameter Completion} problem asks, given a plane graph GG and a positive integer dd, if it is a spanning subgraph of a plane graph HH that has diameter at most dd. We examine two variants of this problem where the input comes with another parameter kk. In the first variant, called BPDC, kk upper bounds the total number of edges to be added and in the second, called BFPDC, kk upper bounds the number of additional edges per face. We prove that both problems are {\sf NP}-complete, the first even for 3-connected graphs of face-degree at most 4 and the second even when k=1k=1 on 3-connected graphs of face-degree at most 5. In this paper we give parameterized algorithms for both problems that run in O(n3)+22O((kd)2logd)nO(n^{3})+2^{2^{O((kd)^2\log d)}}\cdot n steps.Comment: Accepted in IPEC 201
    corecore