3,614 research outputs found

    Accelerating Consensus by Spectral Clustering and Polynomial Filters

    Get PDF
    It is known that polynomial filtering can accelerate the convergence towards average consensus on an undirected network. In this paper the gain of a second-order filtering is investigated. A set of graphs is determined for which consensus can be attained in finite time, and a preconditioner is proposed to adapt the undirected weights of any given graph to achieve fastest convergence with the polynomial filter. The corresponding cost function differs from the traditional spectral gap, as it favors grouping the eigenvalues in two clusters. A possible loss of robustness of the polynomial filter is also highlighted

    Accelerated Consensus via Min-Sum Splitting

    Full text link
    We apply the Min-Sum message-passing protocol to solve the consensus problem in distributed optimization. We show that while the ordinary Min-Sum algorithm does not converge, a modified version of it known as Splitting yields convergence to the problem solution. We prove that a proper choice of the tuning parameters allows Min-Sum Splitting to yield subdiffusive accelerated convergence rates, matching the rates obtained by shift-register methods. The acceleration scheme embodied by Min-Sum Splitting for the consensus problem bears similarities with lifted Markov chains techniques and with multi-step first order methods in convex optimization

    Distributed Weight Selection in Consensus Protocols by Schatten Norm Minimization

    Full text link
    In average consensus protocols, nodes in a network perform an iterative weighted average of their estimates and those of their neighbors. The protocol converges to the average of initial estimates of all nodes found in the network. The speed of convergence of average consensus protocols depends on the weights selected on links (to neighbors). We address in this paper how to select the weights in a given network in order to have a fast speed of convergence for these protocols. We approximate the problem of optimal weight selection by the minimization of the Schatten p-norm of a matrix with some constraints related to the connectivity of the underlying network. We then provide a totally distributed gradient method to solve the Schatten norm optimization problem. By tuning the parameter p in our proposed minimization, we can simply trade-off the quality of the solution (i.e. the speed of convergence) for communication/computation requirements (in terms of number of messages exchanged and volume of data processed). Simulation results show that our approach provides very good performance already for values of p that only needs limited information exchange. The weight optimization iterative procedure can also run in parallel with the consensus protocol and form a joint consensus-optimization procedure.Comment: N° RR-8078 (2012
    corecore