592 research outputs found

    Robust Spoken Language Understanding for House Service Robots

    Get PDF
    Service robotics has been growing significantly in thelast years, leading to several research results and to a numberof consumer products. One of the essential features of theserobotic platforms is represented by the ability of interactingwith users through natural language. Spoken commands canbe processed by a Spoken Language Understanding chain, inorder to obtain the desired behavior of the robot. The entrypoint of such a process is represented by an Automatic SpeechRecognition (ASR) module, that provides a list of transcriptionsfor a given spoken utterance. Although several well-performingASR engines are available off-the-shelf, they operate in a generalpurpose setting. Hence, they may be not well suited in therecognition of utterances given to robots in specific domains. Inthis work, we propose a practical yet robust strategy to re-ranklists of transcriptions. This approach improves the quality of ASRsystems in situated scenarios, i.e., the transcription of roboticcommands. The proposed method relies upon evidences derivedby a semantic grammar with semantic actions, designed tomodel typical commands expressed in scenarios that are specificto human service robotics. The outcomes obtained throughan experimental evaluation show that the approach is able toeffectively outperform the ASR baseline, obtained by selectingthe first transcription suggested by the AS

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    DNN-Based Semantic Model for Rescoring N-best Speech Recognition List

    Full text link
    The word error rate (WER) of an automatic speech recognition (ASR) system increases when a mismatch occurs between the training and the testing conditions due to the noise, etc. In this case, the acoustic information can be less reliable. This work aims to improve ASR by modeling long-term semantic relations to compensate for distorted acoustic features. We propose to perform this through rescoring of the ASR N-best hypotheses list. To achieve this, we train a deep neural network (DNN). Our DNN rescoring model is aimed at selecting hypotheses that have better semantic consistency and therefore lower WER. We investigate two types of representations as part of input features to our DNN model: static word embeddings (from word2vec) and dynamic contextual embeddings (from BERT). Acoustic and linguistic features are also included. We perform experiments on the publicly available dataset TED-LIUM mixed with real noise. The proposed rescoring approaches give significant improvement of the WER over the ASR system without rescoring models in two noisy conditions and with n-gram and RNNLM
    • …
    corecore