4,381 research outputs found

    Multimodal Polynomial Fusion for Detecting Driver Distraction

    Full text link
    Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.Comment: INTERSPEECH 201

    Staging Transformations for Multimodal Web Interaction Management

    Get PDF
    Multimodal interfaces are becoming increasingly ubiquitous with the advent of mobile devices, accessibility considerations, and novel software technologies that combine diverse interaction media. In addition to improving access and delivery capabilities, such interfaces enable flexible and personalized dialogs with websites, much like a conversation between humans. In this paper, we present a software framework for multimodal web interaction management that supports mixed-initiative dialogs between users and websites. A mixed-initiative dialog is one where the user and the website take turns changing the flow of interaction. The framework supports the functional specification and realization of such dialogs using staging transformations -- a theory for representing and reasoning about dialogs based on partial input. It supports multiple interaction interfaces, and offers sessioning, caching, and co-ordination functions through the use of an interaction manager. Two case studies are presented to illustrate the promise of this approach.Comment: Describes framework and software architecture for multimodal web interaction managemen

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    Combining heterogeneous inputs for the development of adaptive and multimodal interaction systems

    Get PDF
    In this paper we present a novel framework for the integration of visual sensor networks and speech-based interfaces. Our proposal follows the standard reference architecture in fusion systems (JDL), and combines different techniques related to Artificial Intelligence, Natural Language Processing and User Modeling to provide an enhanced interaction with their users. Firstly, the framework integrates a Cooperative Surveillance Multi-Agent System (CS-MAS), which includes several types of autonomous agents working in a coalition to track and make inferences on the positions of the targets. Secondly, enhanced conversational agents facilitate human-computer interaction by means of speech interaction. Thirdly, a statistical methodology allows modeling the user conversational behavior, which is learned from an initial corpus and improved with the knowledge acquired from the successive interactions. A technique is proposed to facilitate the multimodal fusion of these information sources and consider the result for the decision of the next system action.This work was supported in part by Projects MEyC TEC2012-37832-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS S2009/TIC-1485Publicad

    Processing and fusioning multiple heterogeneous information sources in multimodal dialog systems

    Get PDF
    Proceedings of: 17th International Conference on Information Fusion (FUSION 2014): Salamanca, Spain 7-10 July 2014.Context-aware dialog systems must be able to process very heterogeneous information sources and user input modes. In this paper we propose a method to fuse multimodal inputs into a unified representation. This representation allows the dialog manager of the system to find the best interaction strategy and also select the next system response. We show the applicability of our proposal by means of the implementation of a dialog system that considers spoken, tactile, and also information related to the context of the interaction with its users. Context information is related to the detection of user's intention during the dialog and their emotional state (internal context), and the user's location (external context).This work was supported in part by Projects MINECO TEC2012-37832-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485).Publicad

    Proceedings of the 2nd EICS Workshop on Engineering Interactive Computer Systems with SCXML

    Get PDF
    • …
    corecore