39 research outputs found

    Surface and Contextual Linguistic Cues in Dialog Act Classification: A Cognitive Science View

    Full text link
    What role do linguistic cues on a surface and contextual level have in identifying the intention behind an utterance? Drawing on the wealth of studies and corpora from the computational task of dialog act classification, we studied this question from a cognitive science perspective. We first reviewed the role of linguistic cues in dialog act classification studies that evaluated model performance on three of the most commonly used English dialog act corpora. Findings show that frequency‐based, machine learning, and deep learning methods all yield similar performance. Classification accuracies, moreover, generally do not explain which specific cues yield high performance. Using a cognitive science approach, in two analyses, we systematically investigated the role of cues in the surface structure of the utterance and cues of the surrounding context individually and combined. By comparing the explained variance, rather than the prediction accuracy of these cues in a logistic regression model, we found that (1) while surface and contextual linguistic cues can complement each other, surface linguistic cues form the backbone in human dialog act identification, (2) with word frequency statistics being particularly important for the dialog act, and (3) the similar trends across corpora, despite differences in the type of dialog, corpus setup, and dialog act tagset. The importance of surface linguistic cues in dialog act classification sheds light on how both computers and humans take advantage of these cues in speech act recognition

    Using high level dialogue information for dialogue act recognition using prosodic features.

    Get PDF
    We look at the effect of using high level discourse knowledge in dialogue act type detection. We also look at ways this knowledge can be used for improving language modelling and intonation modelling of utterance types. We find a significant improvement of predictability of dialogue models using higher level discourse knowledge

    Conversation analysis for computational modelling of task-oriented dialogue

    Get PDF
    Current methods of dialogue modelling for Conversational AI (CAI) bear little resemblance to the manner in which humans organise conversational interactions. The way utterances are represented, interpreted, and generated are determined by the necessities of the chosen technique and do not resemble those used during natural conversation. In this research we propose a new method of representing task-oriented dialogue, for the purpose of computational modelling, which draws inspiration from the study of human conversational structures, Conversation Analysis (CA). Our approach unifies two well established, yet disparate, methods of dialogue representation: Dialogue Acts (DA), which provide valuable semantic and intentional information, and the Adjacency Pair (AP), which are the predominant method by which structure is defined within CA. This computationally compatible approach subsequently benefits from the strengths, whilst overcoming the weaknesses, of its components.To evaluate this thesis we first develop and evaluate a novel CA Modelling Schema (CAMS), which combines concepts of DA’s and AP’s to form AP-type labels. Thus creating a single annotation scheme that is able to capture the semantic and syntactic structure of dialogue. We additionally annotate a task-oriented corpus with our schema to create CAMS-KVRET, a first-of-its-kind DA and AP labelled dataset. Next, we conduct detailed investigations of input representation and architectural considerations in order to develop and refine several ML models capable of automatically labelling dialogue with CAMS labels. Finally, we evaluate our proposed method of dialogue representation, and accompanying models, against several dialogue modelling tasks, including next label prediction, response generation, and structure representation.With our evaluation of CAMS we show that it is both reproducible, and inherently learnable, even for novice annotators. And further, that it is most intuitively applied to task-oriented dialogues. During development of our ML classifiers we determined that, in most cases, input and architectural choices are equally applicable to DA and AP classification. We evaluated our classification models against CAMS-KVRET, and achieved high test set classification accuracy for all label components of the corpus. Additionally, we were able to show that, not only is our model capable of learning the semantic and structural aspects of both the DA and AP components, but also that AP are more predictive of future utterance labels, and thus representative of the overall dialogue structure. These finding were further supported by the results of our next-label prediction and response generation experiments. Moreover, we found AP were able to reduce the perplexity of the generative model. Finally, by using χ2 analysis to create dialogue structure graphs, we demonstrate that AP produce a more generalised and efficient method of dialogue representation. Thus, our research has shown that integrating DA with AP, into AP-type labels, captures the semantic and syntactic structure of an interaction, in a format that is independent of the domain or topic, and which benefits the computational modelling of task-oriented dialogues

    Cognitive architecture of multimodal multidimensional dialogue management

    Get PDF
    Numerous studies show that participants of real-life dialogues happen to get involved in rather dynamic non-sequential interactions. This challenges the dialogue system designs based on a reactive interlocutor paradigm and calls for dialog systems that can be characterised as a proactive learner, accomplished multitasking planner and adaptive decision maker. Addressing this call, the thesis brings innovative integration of cognitive models into the human-computer dialogue systems. This work utilises recent advances in Instance-Based Learning of Theory of Mind skills and the established Cognitive Task Analysis and ACT-R models. Cognitive Task Agents, producing detailed simulation of human learning, prediction, adaption and decision making, are integrated in the multi-agent Dialogue Man-ager. The manager operates on the multidimensional information state enriched with representations based on domain- and modality-specific semantics and performs context-driven dialogue acts interpretation and generation. The flexible technical framework for modular distributed dialogue system integration is designed and tested. The implemented multitasking Interactive Cognitive Tutor is evaluated as showing human-like proactive and adaptive behaviour in setting goals, choosing appropriate strategies and monitoring processes across contexts, and encouraging the user exhibit similar metacognitive competences

    Dimensions of communication

    Get PDF
    corecore