85 research outputs found

    Automatic Dialect and Accent Recognition and its Application to Speech Recognition

    Get PDF
    A fundamental challenge for current research on speech science and technology is understanding and modeling individual variation in spoken language. Individuals have their own speaking styles, depending on many factors, such as their dialect and accent as well as their socioeconomic background. These individual differences typically introduce modeling difficulties for large-scale speaker-independent systems designed to process input from any variant of a given language. This dissertation focuses on automatically identifying the dialect or accent of a speaker given a sample of their speech, and demonstrates how such a technology can be employed to improve Automatic Speech Recognition (ASR). In this thesis, we describe a variety of approaches that make use of multiple streams of information in the acoustic signal to build a system that recognizes the regional dialect and accent of a speaker. In particular, we examine frame-based acoustic, phonetic, and phonotactic features, as well as high-level prosodic features, comparing generative and discriminative modeling techniques. We first analyze the effectiveness of approaches to language identification that have been successfully employed by that community, applying them here to dialect identification. We next show how we can improve upon these techniques. Finally, we introduce several novel modeling approaches -- Discriminative Phonotactics and kernel-based methods. We test our best performing approach on four broad Arabic dialects, ten Arabic sub-dialects, American English vs. Indian English accents, American English Southern vs. Non-Southern, American dialects at the state level plus Canada, and three Portuguese dialects. Our experiments demonstrate that our novel approach, which relies on the hypothesis that certain phones are realized differently across dialects, achieves new state-of-the-art performance on most dialect recognition tasks. This approach achieves an Equal Error Rate (EER) of 4% for four broad Arabic dialects, an EER of 6.3% for American vs. Indian English accents, 14.6% for American English Southern vs. Non-Southern dialects, and 7.9% for three Portuguese dialects. Our framework can also be used to automatically extract linguistic knowledge, specifically the context-dependent phonetic cues that may distinguish one dialect form another. We illustrate the efficacy of our approach by demonstrating the correlation of our results with geographical proximity of the various dialects. As a final measure of the utility of our studies, we also show that, it is possible to improve ASR. Employing our dialect identification system prior to ASR to identify the Levantine Arabic dialect in mixed speech of a variety of dialects allows us to optimize the engine's language model and use Levantine-specific acoustic models where appropriate. This procedure improves the Word Error Rate (WER) for Levantine by 4.6% absolute; 9.3% relative. In addition, we demonstrate in this thesis that, using a linguistically-motivated pronunciation modeling approach, we can improve the WER of a state-of-the art ASR system by 2.2% absolute and 11.5% relative WER on Modern Standard Arabic

    Studying dialects to understand human language

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 65-71).This thesis investigates the study of dialect variations as a way to understand how humans might process speech. It evaluates some of the important research in dialect identification and draws conclusions about how their results can give insights into human speech processing. A study clustering dialects using k-means clustering is done. Self-organizing maps are proposed as a tool for dialect research, and a self-organizing map is implemented for the purposes of testing this. Several areas for further research are identified, including how dialects are stored in the brain, more detailed descriptions of how dialects vary, including contextual effects, and more sophisticated visualization tools. Keywords: dialect, accent, identification, recognition, self-organizing maps, words, lexical sets, clustering.by Akua Afriyie Nti.M.Eng

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201

    Deep neural network acoustic models for multi-dialect Arabic speech recognition

    Get PDF
    Speech is a desirable communication method between humans and computers. The major concerns of the automatic speech recognition (ASR) are determining a set of classification features and finding a suitable recognition model for these features. Hidden Markov Models (HMMs) have been demonstrated to be powerful models for representing time varying signals. Artificial Neural Networks (ANNs) have also been widely used for representing time varying quasi-stationary signals. Arabic is one of the oldest living languages and one of the oldest Semitic languages in the world, it is also the fifth most generally used language and is the mother tongue for roughly 200 million people. Arabic speech recognition has been a fertile area of reasearch over the previous two decades, as attested by the various papers that have been published on this subject. This thesis investigates phoneme and acoustic models based on Deep Neural Networks (DNN) and Deep Echo State Networks for multi-dialect Arabic Speech Recognition. Moreover, the TIMIT corpus with a wide variety of American dialects is also aimed to evaluate the proposed models. The availability of speech data that is time-aligned and labelled at phonemic level is a fundamental requirement for building speech recognition systems. A developed Arabic phoneme database (APD) was manually timed and phonetically labelled. This dataset was constructed from the King Abdul-Aziz Arabic Phonetics Database (KAPD) database for Saudi Arabia dialect and the Centre for Spoken Language Understanding (CSLU2002) database for different Arabic dialects. This dataset covers 8148 Arabic phonemes. In addition, a corpus of 120 speakers (13 hours of Arabic speech) randomly selected from the Levantine Arabic dialect database that is used for training and 24 speakers (2.4 hours) for testing are revised and transcription errors were manually corrected. The selected dataset is labelled automatically using the HTK Hidden Markov Model toolkit. TIMIT corpus is also used for phone recognition and acoustic modelling task. We used 462 speakers (3.14 hours) for training and 24 speakers (0.81 hours) for testing. For Automatic Speech Recognition (ASR), a Deep Neural Network (DNN) is used to evaluate its adoption in developing a framewise phoneme recognition and an acoustic modelling system for Arabic speech recognition. Restricted Boltzmann Machines (RBMs) DNN models have not been explored for any Arabic corpora previously. This allows us to claim priority for adopting this RBM DNN model for the Levantine Arabic acoustic models. A post-processing enhancement was also applied to the DNN acoustic model outputs in order to improve the recognition accuracy and to obtain the accuracy at a phoneme level instead of the frame level. This post process has significantly improved the recognition performance. An Echo State Network (ESN) is developed and evaluated for Arabic phoneme recognition with different learning algorithms. This investigated the use of the conventional ESN trained with supervised and forced learning algorithms. A novel combined supervised/forced supervised learning algorithm (unsupervised adaptation) was developed and tested on the proposed optimised Arabic phoneme recognition datasets. This new model is evaluated on the Levantine dataset and empirically compared with the results obtained from the baseline Deep Neural Networks (DNNs). A significant improvement on the recognition performance was achieved when the ESN model was implemented compared to the baseline RBM DNN model’s result. The results show that the ESN model has a better ability for recognizing phonemes sequences than the DNN model for a small vocabulary size dataset. The adoption of the ESNs model for acoustic modeling is seen to be more valid than the adoption of the DNNs model for acoustic modeling speech recognition, as ESNs are recurrent models and expected to support sequence models better than the RBM DNN models even with the contextual input window. The TIMIT corpus is also used to investigate deep learning for framewise phoneme classification and acoustic modelling using Deep Neural Networks (DNNs) and Echo State Networks (ESNs) to allow us to make a direct and valid comparison between the proposed systems investigated in this thesis and the published works in equivalent projects based on framewise phoneme recognition used the TIMIT corpus. Our main finding on this corpus is that ESN network outperform time-windowed RBM DNN ones. However, our developed system ESN-based shows 10% lower performance when it was compared to the other systems recently reported in the literature that used the same corpus. This due to the hardware availability and not applying speaker and noise adaption that can improve the results in this thesis as our aim is to investigate the proposed models for speech recognition and to make a direct comparison between these models

    Speech recognition systems and russian pronunciation variation in the context of VoiceInteraction

    Get PDF
    The present thesis aims to describe the work performed during the internship for the master’s degree in Linguistics at VoiceInteraction, an international Artificial Intelligence (AI) company, specializing in developing speech processing technologies. The goal of the internship was to study phonetic characteristics of the Russian language, attending to four main tasks: description of the phonetic-phonological inventory; validation of transcriptions of broadcast news; validation of a previously created lexicon composed by ten thousand (10 000) most frequently observed words in a text corpus crawled from Russian reference newspapers websites; and integration of filled pauses into the Automatic Speech Recognizer (ASR). Initially, a collection of audio and text broadcast news media from Russian-speaking regions, European Russian, Belarus, and the Caucasus Region, featuring different varieties of Russian was conducted. The extracted data and the company's existing data were used to train the acoustic, pronunciation, and language models. The audio data was automatically processed in a proprietary platform and then revised by human annotators. Transcriptions produced automatically and reviewed by annotators were analyzed, and the most common errors were extracted to provide feedback to the community of annotators. The validation of transcriptions, along with the annotation of all of the disfluencies (that previously were left out), resulted in the decrease of Word Error Rate (WER) in most cases. In some cases (in European Russian transcriptions), WER increased, the models were not sufficiently effective to identify the correct words, potentially problematic. Also, audio with overlapped speech, disfluencies, and acoustic events can impact the WER. Since we used the model that was only trained with European Russian to recognize other varieties of Russian language, it resulted in high WER for Belarus and the Caucasus region. The characterization of the Russian phonetic-phonological inventory and the construction of pronunciation rules for internal and external sandhi phenomena were performed for the validation of the lexicon – ten thousand of the most frequently observed words in a text corpus crawled from Russian reference newspapers websites, were revised and modified for the extraction of linguistic patterns to be used in a statistical Grapheme-to-phone (G2P) model. Two evaluations were conducted: before the modifications to the lexicon and after. Preliminary results without training the model show no significant results - 19.85% WER before the modifications, and 19.97% WER after, with a difference of 0.12%. However, we observed a slight improvement of the most frequent words. In the future, we aim to extend the analysis of the lexicon to the 400 000 entries (total lexicon size), analyze the type of errors that are produced, decrease the word error rate (WER), and analyze acoustic models, as well. In this work, we also studied filled pauses, since we believe that research on filled pauses for the Russian language can improve the recognition system of VoiceInteraction, by reducing the processing time and increasing the quality. These are marked in the transcriptions with “%”. In Russian, according to the literature (Ten, 2015; Harlamova, 2008; Bogradonova-Belgarian & Baeva, 2018), these are %a [a], %am [am], %@ [ə], %@m [əm], %e [e], %ɨ [ɨ], %m [m], and %n [n]. In the speech data, two more filled pauses were found, namely, %na [na] and %mna [mna], as far as we know, not yet referenced in the literature. Finally, the work performed during an internship contributed to a European project - Artificial Intelligence and Advanced Data Analysis for Authority Agencies (AIDA). The main goal of the present project is to build a solution capable of automating the processing of large amounts of data that Law Enforcement Agencies (LEAs) have to analyze in the investigations of Terrorism and Cybercrime, using pioneering machine learning and artificial intelligence methods. VoiceInteraction's main contribution to the project was to apply ASR and validate the transcriptions of the Russian (religious-related content). In order to do so, all the tasks performed during the thesis were very relevant and applied in the scope of the AIDA project. Transcription analysis results from the AIDA project showed a high Out-of-Vocabulary (OOV) rate and high substitution (SUBS) rate. Since the language model used in this project was adapted for broadcast content, the religious-related words were left out. Also, function words were incorrectly recognized, in most cases, due to coarticulation with the previous or the following word.A presente tese descreve o trabalho que foi realizado no âmbito de um estágio em linguística computacional na VoiceInteraction, uma empresa de tecnologias de processamento de fala. Desde o início da sua atividade, a empresa tem-se dedicado ao desenvolvimento de tecnologia própria em várias áreas do processamento computacional da fala, entre elas, síntese de fala, processamento de língua natural e reconhecimento automático de fala, representando esta última a principal área de negócio da empresa. A tecnologia de reconhecimento de automático de fala da VoiceInteraction explora a utilização de modelos híbridos em combinação com as redes neuronais (DNN - Deep Neural Networks), que, segundo Lüscher et al. (2019), apresenta um melhor desempenho, quando comparado com modelos de end-to-end apenas. O objetivo principal do estágio focou-se no estudo da fonética da língua russa, atendendo a quatro tarefas: criação do inventário fonético-fonológico; validação das transcrições de noticiários; validação do léxico previamente criado e integração de pausas preenchidas no sistema. Inicialmente, foi realizada uma recolha dos principais meios de comunicação (áudio e texto), apresentando diferentes variedades do russo, nomeadamente, da Rússia Europeia, Bielorrússia e Cáucaso Central. Na Rússia europeia o russo é a língua oficial, na Bielorrússia o russo faz parte das línguas oficiais do país, e na região do Cáucaso Central, o russo é usado como língua franca, visto que este era falado na União Soviética e continua até hoje a ser falado nas regiões pós-Soviéticas. Tratou-se de abranger a maior cobertura possível da língua russa e neste momento apenas foi possível recolher os dados das variedades mencionadas. Os dados extraídos de momento, juntamente com os dados já existentes na empresa, foram utilizados no treino dos modelos acústicos, modelos de pronúncia e modelos de língua. Para o tratamento dos dados de áudio, estes foram inseridos numa plataforma proprietária da empresa, Calligraphus, que, para além de fornecer uma interface de transcrição para os anotadores humanos poderem transcrever os conteúdos, efetua também uma sugestão de transcrição automática desses mesmos conteúdos, a fim de diminuir o esforço despendido pelos anotadores na tarefa. De seguida, as transcrições foram analisadas, de forma a garantir que o sistema de anotação criado pela VoiceInteraction foi seguido, indicando todas as disfluências de fala (fenómenos característicos da edição da fala), tais como prolongamentos, pausas preenchidas, repetições, entre outros e transcrevendo a fala o mais próximo da realidade. Posteriormente, os erros sistemáticos foram analisados e exportados, de forma a fornecer orientações e sugestões de melhoria aos anotadores humanos e, por outro lado, melhorar o desempenho do sistema de reconhecimento. Após a validação das transcrições, juntamente com a anotação de todas as disfluências (que anteriormente eram deixadas de fora), observamos uma diminuição de WER, na maioria dos casos, tal como esperado. Porém, em alguns casos, observamos um aumento do WER. Apesar das correções efetuadas aos ficheiros analisados, os modelos não foram suficientemente eficazes no reconhecimento das palavras corretas, potencialmente problemáticas. A elevada taxa de WER nos áudios com debates políticos, está relacionada com uma maior frequência de fala sobreposta e disfluências (e.g., pausas preenchidas, prolongamentos). O modelo utilizado para reconhecer todas as variedades foi treinado apenas com a variedade de russo europeu e, por isso, o WER alto também foi observado para as variedades da Bielorrússia e para a região do Cáucaso. Numa perspetiva baseada em dados coletados pela empresa, foi realizada, de igual modo, uma caracterização e descrição do inventário fonético-fonológico do russo e a construção de regras de pronúncia, para fenómenos de sandhi interno e externo (Shcherba, 1957; Litnevskaya, 2006; Lekant, 2007; Popov, 2014). A empresa já empregava, através de um G2P estatístico específico para russo, um inventário fonético para o russo, correspondente à literatura referida anteriormente, mas o mesmo ainda não havia sido validado. Foi possível realizar uma verificação e correção, com base na caracterização dos fones do léxico do russo e nos dados ecológicos obtidos de falantes russos em situações comunicativas diversas. A validação do inventário fonético-fonológico permitiu ainda a consequente validação do léxico de russo. O léxico foi construído com base num conjunto de características (e.g., grafema em posição átona tem como pronúncia correspondente o fone [I] e em posição tónica - [i]; o grafema em posição final de palavra é pronunciado como [- vozeado] - [f]; entre outras características) e foi organizado com base no critério da frequência de uso. No total, foram verificadas dez mil (10 000) palavras mais frequentes do russo, tendo por base as estatísticas resultantes da análise dos conteúdos existentes num repositório de artigos de notícias recolhidos previamente de jornais de referência em língua russa. Foi realizada uma avaliação do sistema de reconhecimento antes e depois da modificação das dez mil palavras mais frequentemente ocorridas no léxico - 19,85% WER antes das modificações, e 19,97% WER depois, com uma diferença de 0,12%. Os resultados preliminares, sem o treino do modelo, não demonstram resultados significativos, porém, observamos uma ligeira melhoria no reconhecimento das palavras mais frequentes, tais como palavras funcionais, acrónimos, verbos, nomes, entre outros. Através destes resultados e com base nas regras criadas a partir da correção das dez mil palavras, pretendemos, no futuro, alargar as mesmas a todo o léxico, constituído por quatrocentas mil (400 000) entradas. Após a validação das transcrições e do léxico, com base na literatura, foi também possível realizar uma análise das pausas preenchidas do russo para a integração no sistema de reconhecimento. O interesse de se incluir também as pausas no reconhecedor automático deveu-se sobretudo a estes mecanismos serem difíceis de identificar automaticamente e poderem ser substituídos ou por afetarem as sequências adjacentes. De acordo com o sistema de anotação da empresa, as pausas preenchidas são marcadas na transcrição com o símbolo de percentagem - %. As pausas preenchidas do russo encontradas na literatura foram %a [a], %am [am] (Rose, 1998; Ten, 2015), %@ [ə], %@m [əm] (Bogdanova-Beglarian & Baeva, 2018) %e [e], %ɨ [ɨ], %m [m] e %n [n] (Harlamova, 2008). Nos dados de áudio disponíveis na referida plataforma, para além das pausas preenchidas mencionadas, foram encontradas mais duas, nomeadamente, %na [na] e %mna [mna], até quanto nos é dado saber, ainda não descritas na literatura. De momento, todas as pausas preenchidas referidas já fazem parte dos modelos de reconhecimento automático de fala para a língua russa. O trabalho desenvolvido durante o estágio, ou seja, a validação dos dados existentes na empresa, foi aplicado ao projeto europeu AIDA - The Artificial Intelligence and Advanced Data Analysis for Authority Agencies. O objetivo principal do presente projeto é de criar uma solução capaz de detetar possíveis crimes informáticos e de terrorismo, utilizando métodos de aprendizagem automática. A principal contribuição da VoiceInteraction para o projeto foi a aplicação do ASR e validação das transcrições do russo (conteúdo relacionado com a religião). Para tal, todas as tarefas realizadas durante a tese foram muito relevantes e aplicadas no âmbito do projeto AIDA. Os resultados da validação das transcrições do projeto, mostraram uma elevada taxa de palavras Fora de Vocabulário (OOV) e uma elevada taxa de Substituição (SUBS). Uma vez que o modelo de língua utilizado neste projeto foi adaptado ao conteúdo noticioso, as palavras relacionadas com a religião não se encontravam neste. Além disso, as palavras funcionais foram incorretamente reconhecidas, na maioria dos casos, devido à coarticulação com a palavra anterior ou a seguinte

    Characterizing phonetic transformations and fine-grained acoustic differences across dialects

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 169-175).This thesis is motivated by the gaps between speech science and technology in analyzing dialects. In speech science, investigating phonetic rules is usually manually laborious and time consuming, limiting the amount of data analyzed. Without sufficient data, the analysis could potentially overlook or over-specify certain phonetic rules. On the other hand, in speech technology such as automatic dialect recognition, phonetic rules are rarely modeled explicitly. While many applications do not require such knowledge to obtain good performance, it is beneficial to specifically model pronunciation patterns in certain applications. For example, users of language learning software can benefit from explicit and intuitive feedback from the computer to alter their pronunciation; in forensic phonetics, it is important that results of automated systems are justifiable on phonetic grounds. In this work, we propose a mathematical framework to analyze dialects in terms of (1) phonetic transformations and (2) acoustic differences. The proposed Phonetic based Pronunciation Model (PPM) uses a hidden Markov model to characterize when and how often substitutions, insertions, and deletions occur. In particular, clustering methods are compared to better model deletion transformations. In addition, an acoustic counterpart of PPM, Acoustic-based Pronunciation Model (APM), is proposed to characterize and locate fine-grained acoustic differences such as formant transitions and nasalization across dialects. We used three data sets to empirically compare the proposed models in Arabic and English dialects. Results in automatic dialect recognition demonstrate that the proposed models complement standard baseline systems. Results in pronunciation generation and rule retrieval experiments indicate that the proposed models learn underlying phonetic rules across dialects. Our proposed system postulates pronunciation rules to a phonetician who interprets and refines them to discover new rules or quantify known rules. This can be done on large corpora to develop rules of greater statistical significance than has previously been possible. Potential applications of this work include speaker characterization and recognition, automatic dialect recognition, automatic speech recognition and synthesis, forensic phonetics, language learning or accent training education, and assistive diagnosis tools for speech and voice disorders.by Nancy Fang-Yih Chen.Ph.D

    Social and structural aspects of language contact and change

    Get PDF
    This book brings together papers that discuss social and structural aspects of language contact and language change. Several papers look at the relevance of historical documents to determine the linguistic nature of early contact varieties, while others investigate the specific processes of contact-induced change that were involved in the emergence and development of these languages. A third set of papers look at how new datasets and greater sensitivity to social issues can help to (re)assess persistent theoretical and empirical questions as well as help to open up new avenues of research. In particular they highlight the heterogeneity of contemporary language practices and attitudes often obscured in sociolinguistic research. The contributions all focus on language variation and change but investigate it from a variety of disciplinary and empirical perspectives and cover a range of linguistic contexts
    corecore