25,223 research outputs found

    On the Completeness of Spider Diagrams Augmented with Constants

    Get PDF
    Diagrammatic reasoning can be described formally by a number of diagrammatic logics; spider diagrams are one of these, and are used for expressing logical statements about set membership and containment. Here, existing work on spider diagrams is extended to include constant spiders that represent specific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsulating logical equivalence and logical consequence. We prove that the resulting logic is sound, complete and decidable

    Encoding !-tensors as !-graphs with neighbourhood orders

    Full text link
    Diagrammatic reasoning using string diagrams provides an intuitive language for reasoning about morphisms in a symmetric monoidal category. To allow working with infinite families of string diagrams, !-graphs were introduced as a method to mark repeated structure inside a diagram. This led to !-graphs being implemented in the diagrammatic proof assistant Quantomatic. Having a partially automated program for rewriting diagrams has proven very useful, but being based on !-graphs, only commutative theories are allowed. An enriched abstract tensor notation, called !-tensors, has been used to formalise the notion of !-boxes in non-commutative structures. This work-in-progress paper presents a method to encode !-tensors as !-graphs with some additional structure. This will allow us to leverage the existing code from Quantomatic and quickly provide various tools for non-commutative diagrammatic reasoning.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    PyZX: Large Scale Automated Diagrammatic Reasoning

    Full text link
    The ZX-calculus is a graphical language for reasoning about ZX-diagrams, a type of tensor networks that can represent arbitrary linear maps between qubits. Using the ZX-calculus, we can intuitively reason about quantum theory, and optimise and validate quantum circuits. In this paper we introduce PyZX, an open source library for automated reasoning with large ZX-diagrams. We give a brief introduction to the ZX-calculus, then show how PyZX implements methods for circuit optimisation, equality validation, and visualisation and how it can be used in tandem with other software. We end with a set of challenges that when solved would enhance the utility of automated diagrammatic reasoning.Comment: In Proceedings QPL 2019, arXiv:2004.1475

    Generalised Compositional Theories and Diagrammatic Reasoning

    Get PDF
    This chapter provides an introduction to the use of diagrammatic language, or perhaps more accurately, diagrammatic calculus, in quantum information and quantum foundations. We illustrate the use of diagrammatic calculus in one particular case, namely the study of complementarity and non-locality, two fundamental concepts of quantum theory whose relationship we explore in later part of this chapter. The diagrammatic calculus that we are concerned with here is not merely an illustrative tool, but it has both (i) a conceptual physical backbone, which allows it to act as a foundation for diverse physical theories, and (ii) a genuine mathematical underpinning, permitting one to relate it to standard mathematical structures.Comment: To appear as a Springer book chapter chapter, edited by G. Chirabella, R. Spekken

    Tactical diagrammatic reasoning

    Get PDF
    Although automated reasoning with diagrams has been possible for some years, tools for diagrammatic reasoning are generally much less sophisticated than their sentential cousins. The tasks of exploring levels of automation and abstraction in the construction of proofs and of providing explanations of solutions expressed in the proofs remain to be addressed. In this paper we take an interactive proof assistant for Euler diagrams, Speedith, and add tactics to its reasoning engine, providing a level of automation in the construction of proofs. By adding tactics to Speedith's repertoire of inferences, we ease the interaction between the user and the system and capture a higher level explanation of the essence of the proof. We analysed the design options for tactics by using metrics which relate to human readability, such as the number of inferences and the amount of clutter present in diagrams. Thus, in contrast to the normal case with sentential tactics, our tactics are designed to not only prove the theorem, but also to support explanation

    Characteristics of diagrammatic reasoning

    No full text
    International audienceDiagrammatic, analogical or iconic representations are often contrasted with linguistic or logical representations, in which the shape of the symbols is arbitrary. Although commonly used, diagrams have long suffered from their reputation as mere tools, as mere support for intuition. We list here the main characteristics of diagrammatic inferential systems, and defend the idea that heterogeneous representation systems, including both linguistic and diagrammatic representations, offer real computational perspectives in knowledge modeling and reasoning

    What is Diagrammatic Reasoning in Mathematics?

    Get PDF
    In recent years, epistemological issues connected with the use of diagrams and visualization in mathematics have been a subject of increasing interest. In particular, it is open to dispute what role diagrams play in justifying mathematical statements. One of the issues that may appear in this context is: what is the character of reasoning that relies in some way on a diagram or visualization and in what way is it distinct from other types of reasoning in mathematics? In this paper it is proposed to distinguish between several ways of using visualization or diagrams in mathematics, each of which could be connected with a different concept of diagrammatic/visual reasoning. Main differences between those types of reasoning are also hinted at. A distinction between visual (diagrammatic) reasoning and visual (diagrammatic) thinking is also considered
    • …
    corecore