5,009 research outputs found

    Zeros of Unilateral Quaternionic Polynomials

    Full text link
    The purpose of this paper is to show how the problem of finding the zeros of unilateral n-order quaternionic polynomials can be solved by determining the eigen-vectors of the corresponding companion matrix. This approach, probably superfluous in the case of quadratic equations for which a closed formula can be given, becomes truly useful for (unilateral) n-order polynomials. To understand the strehgth of this method, we compare it with the Niven algorithm and show where this (full) matrix approach improves previous methods based on the use of the Niven algorithm. For the convenience of the readers, we explicitly solve some examples of second and third order unilateral quaternionic polynomials. The leading idea of the practical solution method proposed in this work can be summarized in following three steps: translating the quaternionic polynomial in the eigenvalue problem for its companion matrix, finding its eigenvectors, and, finally, giving the quaternionic solution of the unilateral polynomial in terms of the components of such eigenvectors. A brief discussion on bilateral quaternionic quadratic equations is also presented.Comment: 14 page

    Entanglement spectrum of the Heisenberg XXZ chain near the ferromagnetic point

    Full text link
    We study the entanglement spectrum (ES) of a finite XXZ spin 1/2 chain in the limit \Delta -> -1^+ for both open and periodic boundary conditions. At \Delta=-1 (ferromagnetic point) the model is equivalent to the Heisenberg ferromagnet and its degenerate ground state manifold is the SU(2) multiplet with maximal total spin. Any state in this so-called "symmetric sector" is an equal weight superposition of all possible spin configurations. In the gapless phase at \Delta>-1 this property is progressively lost as one moves away from the \Delta=-1 point. We investigate how the ES obtained from the states in this manifold reflects this change, using exact diagonalization and Bethe ansatz calculations. We find that in the limit \Delta ->-1^+ most of the ES levels show divergent behavior. Moreover, while at \Delta=-1 the ES contains no information about the boundaries, for \Delta>-1 it depends dramatically on the choice of boundary conditions. For both open and periodic boundary conditions the ES exhibits an elegant multiplicity structure for which we conjecture a combinatorial formula. We also study the entanglement eigenfunctions, i.e. the eigenfunctions of the reduced density matrix. We find that the eigenfunctions corresponding to the non diverging levels mimic the behavior of the state wavefunction, whereas the others show intriguing polynomial structures. Finally we analyze the distribution of the ES levels as the system is detuned away from \Delta=-1.Comment: 21 pages, 8 figures. Minor corrections, references added. Published versio

    Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems

    Get PDF
    We clarify the algebraic structure of continuous and discrete quasi-exactly solvable spectral problems by embedding them into the framework of the quantum inverse scattering method. The quasi-exactly solvable hamiltonians in one dimension are identified with traces of quantum monodromy matrices for specific integrable systems with non-periodic boundary conditions. Applications to the Azbel-Hofstadter problem are outlined.Comment: 15 pages, standard LaTe

    Local conservation laws in spin-1/2 XY chains with open boundary conditions

    Full text link
    We revisit the conserved quantities of the spin-1/2 XY model with open boundary conditions. In the absence of a transverse field, we find new families of local charges and show that half of the seeming conservation laws are conserved only if the number of sites is odd. In even chains the set of noninteracting charges is abelian, like in the periodic case when the number of sites is odd. In odd chains the set is doubled and becomes non-abelian, like in even periodic chains. The dependence of the charges on the parity of the chain's size undermines the common belief that the thermodynamic limit of diagonal ensembles exists. We consider also the transverse-field Ising chain, where the situation is more ordinary. The generalization to the XY model in a transverse field is not straightforward and we propose a general framework to carry out similar calculations. We conjecture the form of the bulk part of the local charges and discuss the emergence of quasilocal conserved quantities. We provide evidence that in a region of the parameter space there is a reduction of the number of quasilocal conservation laws invariant under chain inversion. As a by-product, we study a class of block-Toeplitz-plus-Hankel operators and identify the conditions that their symbols satisfy in order to commute with a given block-Toeplitz.Comment: 49 pages, 5 figures, 3 tables; published versio
    • …
    corecore