506 research outputs found

    Promotion on oscillating and alternating tableaux and rotation of matchings and permutations

    Get PDF
    Using Henriques' and Kamnitzer's cactus groups, Sch\"utzenberger's promotion and evacuation operators on standard Young tableaux can be generalised in a very natural way to operators acting on highest weight words in tensor products of crystals. For the crystals corresponding to the vector representations of the symplectic groups, we show that Sundaram's map to perfect matchings intertwines promotion and rotation of the associated chord diagrams, and evacuation and reversal. We also exhibit a map with similar features for the crystals corresponding to the adjoint representations of the general linear groups. We prove these results by applying van Leeuwen's generalisation of Fomin's local rules for jeu de taquin, connected to the action of the cactus groups by Lenart, and variants of Fomin's growth diagrams for the Robinson-Schensted correspondence

    Testing the Cactus code on exact solutions of the Einstein field equations

    Get PDF
    The article presents a series of numerical simulations of exact solutions of the Einstein equations performed using the Cactus code, a complete 3-dimensional machinery for numerical relativity. We describe an application (``thorn'') for the Cactus code that can be used for evolving a variety of exact solutions, with and without matter, including solutions used in modern cosmology for modeling the early stages of the universe. Our main purpose has been to test the Cactus code on these well-known examples, focusing mainly on the stability and convergence of the code.Comment: 18 pages, 18 figures, Late

    Three Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests

    Full text link
    This is the first in a series of papers on the construction and validation of a three-dimensional code for general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the spacetime evolutions described by the full set of Einstein equations with a perfect fluid source. The numerical treatment of the general relativistic hydrodynamic equations is based on high resolution shock capturing schemes. These schemes rely on the characteristic information of the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime metric is presented. Evolutions based on three different approximate Riemann solvers coupled to four different discretizations of the Einstein equations are studied and compared. The coupling between the hydrodynamics and the spacetime (the right and left hand side of the Einstein equations) is carried out in a treatment which is second order accurate in {\it both} space and time. Convergence tests for all twelve combinations with a variety of test beds are studied, showing consistency with the differential equations and correct convergence properties. The test-beds examined include shocktubes, Friedmann-Robertson-Walker cosmology tests, evolutions of self-gravitating compact (TOV) stars, and evolutions of relativistically boosted TOV stars. Special attention is paid to the numerical evolution of strongly gravitating objects, e.g., neutron stars, in the full theory of general relativity, including a simple, yet effective treatment for the surface region of the star (where the rest mass density is abruptly dropping to zero).Comment: 45 pages RevTeX, 34 figure

    Implementation of standard testbeds for numerical relativity

    Get PDF
    We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.Comment: Corrected versio

    Scaling behaviour of three-dimensional group field theory

    Get PDF
    Group field theory is a generalization of matrix models, with triangulated pseudomanifolds as Feynman diagrams and state sum invariants as Feynman amplitudes. In this paper, we consider Boulatov's three-dimensional model and its Freidel-Louapre positive regularization (hereafter the BFL model) with a ?ultraviolet' cutoff, and study rigorously their scaling behavior in the large cutoff limit. We prove an optimal bound on large order Feynman amplitudes, which shows that the BFL model is perturbatively more divergent than the former. We then upgrade this result to the constructive level, using, in a self-contained way, the modern tools of constructive field theory: we construct the Borel sum of the BFL perturbative series via a convergent ?cactus' expansion, and establish the ?ultraviolet' scaling of its Borel radius. Our method shows how the ?sum over trian- gulations' in quantum gravity can be tamed rigorously, and paves the way for the renormalization program in group field theory
    • …
    corecore