217 research outputs found

    Transforming triangulations on non planar-surfaces

    Get PDF
    We consider whether any two triangulations of a polygon or a point set on a non-planar surface with a given metric can be transformed into each other by a sequence of edge flips. The answer is negative in general with some remarkable exceptions, such as polygons on the cylinder, and on the flat torus, and certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM Journal on Discrete Mathematics. Keywords: Graph of triangulations, triangulations on surfaces, triangulations of polygons, edge fli

    Multi-triangulations as complexes of star polygons

    Full text link
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    The polytope of non-crossing graphs on a planar point set

    Full text link
    For any finite set \A of nn points in R2\R^2, we define a (3n−3)(3n-3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of ``non-crossing marked graphs'' with vertex set \A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on \A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni+n−32n_i +n -3 where nin_i is the number of points of \A in the interior of \conv(\A). The vertices of this polytope are all the pseudo-triangulations of \A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has been reshape

    Triangulating the Real Projective Plane

    Get PDF
    We consider the problem of computing a triangulation of the real projective plane P2, given a finite point set S={p1, p2,..., pn} as input. We prove that a triangulation of P2 always exists if at least six points in S are in general position, i.e., no three of them are collinear. We also design an algorithm for triangulating P2 if this necessary condition holds. As far as we know, this is the first computational result on the real projective plane

    The geometry of flip graphs and mapping class groups

    Full text link
    The space of topological decompositions into triangulations of a surface has a natural graph structure where two triangulations share an edge if they are related by a so-called flip. This space is a sort of combinatorial Teichm\"uller space and is quasi-isometric to the underlying mapping class group. We study this space in two main directions. We first show that strata corresponding to triangulations containing a same multiarc are strongly convex within the whole space and use this result to deduce properties about the mapping class group. We then focus on the quotient of this space by the mapping class group to obtain a type of combinatorial moduli space. In particular, we are able to identity how the diameters of the resulting spaces grow in terms of the complexity of the underlying surfaces.Comment: 46 pages, 23 figure

    Flipping Cubical Meshes

    Full text link
    We define and examine flip operations for quadrilateral and hexahedral meshes, similar to the flipping transformations previously used in triangular and tetrahedral mesh generation.Comment: 20 pages, 24 figures. Expanded journal version of paper from 10th International Meshing Roundtable. This version removes some unwanted paragraph breaks from the previous version; the text is unchange

    Combinatorial properties of the K3 surface: Simplicial blowups and slicings

    Full text link
    The 4-dimensional abstract Kummer variety K^4 with 16 nodes leads to the K3 surface by resolving the 16 singularities. Here we present a simplicial realization of this minimal resolution. Starting with a minimal 16-vertex triangulation of K^4 we resolve its 16 isolated singularities - step by step - by simplicial blowups. As a result we obtain a 17-vertex triangulation of the standard PL K3 surface. A key step is the construction of a triangulated version of the mapping cylinder of the Hopf map from the real projective 3-space onto the 2-sphere with the minimum number of vertices. Moreover we study simplicial Morse functions and the changes of their levels between the critical points. In this way we obtain slicings through the K3 surface of various topological types.Comment: 31 pages, 3 figure
    • …
    corecore