165 research outputs found

    A categorical framework for concurrent, anticipatory systems

    Get PDF
    A categorical semantic domain is constructed for Petri nets which satisfies the diagonal compositionality requirement with respect to anticipations, i.e., Petri nets are equipped with a compositional anticipation mechanism (vertical compositionality) that distributes through net combinators (horizontal compositionality). The anticipation mechanism is based on graph transformations (single pushout approach). A finitely bicomplete category of partial Petri nets and partial morphisms is introduced. Classes of transformations stand for anticipations. The composition of anticipations (i.e., composition of pushouts) is defined, leading to a category of nets and anticipations which is also complete and cocomplete. Since the anticipation operation composes, the vertical compositionality requirement of Petri nets is achieved. Then, it is proven that the anticipation also satisfies the horizontal compositionality requirement. A specification grammar stands for a system specification and the corresponding induced subcategory of nets and anticipation's stands for ali possible dynamic anticipation's ofthe system (objects) and their relationship (morphims)

    Towards a Godement Calculus for Dinatural Transformations

    Get PDF

    A Comparison of Petri Net Semantics under the Collective Token Philosophy

    Get PDF
    In recent years, several semantics for place/transition Petri nets have been proposed that adopt the collective token philosophy. We investigate distinctions and similarities between three such models, namely configuration structures, concurrent transition systems, and (strictly) symmetric (strict) monoidal categories. We use the notion of adjunction to express each connection. We also present a purely logical description of the collective token interpretation of net behaviours in terms of theories and theory morphisms in partial membership equational logic

    Composing dinatural transformations: Towards a calculus of substitution

    Get PDF
    Dinatural transformations, which generalise the ubiquitous natural transformations to the case where the domain and codomain functors are of mixed variance, fail to compose in general; this has been known since they were discovered by Dubuc and Street in 1970. Many ad hoc solutions to this remarkable shortcoming have been found, but a general theory of compositionality was missing until Petric, in 2003, introduced the concept of g-dinatural transformations, that is, dinatural transformations together with an appropriate graph: he showed how acyclicity of the composite graph of two arbitrary dinatural transformations is a sufficient and essentially necessary condition for the composite transformation to be in turn dinatural. Here we propose an alternative, semantic rather than syntactic, proof of Petric's theorem, which the authors independently rediscovered with no knowledge of its prior existence; we then use it to define a generalised functor category, whose objects are functors of mixed variance in many variables, and whose morphisms are transformations that happen to be dinatural only in some of their variables. We also define a notion of horizontal composition for dinatural transformations, extending the well known version for natural transformations, and prove it is associative and unitary. Horizontal composition embodies substitution of functors into transformations and vice-versa, and is intuitively reflected from the string-diagram point of view by substitution of graphs into graphs

    Exploiting Structure in Solution: Decomposing Composed Models

    Get PDF
    Since their introduction nearly ten years ago, compositionality has been reported as one of the major attractions of stochastic process algebras. The benefits that compositionality provides for model construction are readily apparent and have been demonstrated in numerous case studies. Early research on the compositionality of the languages focussed on how the inherent structure could be used, in conjunction with equivalence relations, for model simplification and aggregation. In this paper we consider how far we have been able to take advantage of compositionality when it comes to solving the Markov process underlying a stochastic process algebra model and outline directions for future work in order for current results to be fully exploited. 1 Introduction Stochastic process algebras (SPA) were first proposed as a tool for performance and dependability modelling in 1989 [24]. At that time there was already a plethora of techniques for constructing performance models so the introducti..

    Compositional Verification for Timed Systems Based on Automatic Invariant Generation

    Full text link
    We propose a method for compositional verification to address the state space explosion problem inherent to model-checking timed systems with a large number of components. The main challenge is to obtain pertinent global timing constraints from the timings in the components alone. To this end, we make use of auxiliary clocks to automatically generate new invariants which capture the constraints induced by the synchronisations between components. The method has been implemented in the RTD-Finder tool and successfully experimented on several benchmarks

    Exploration of Chemical Space: Formal, chemical and historical aspects

    Get PDF
    Starting from the observation that substances and reactions are the central entities of chemistry, I have structured chemical knowledge into a formal space called a directed hypergraph, which arises when substances are connected by their reactions. I call this hypernet chemical space. In this thesis, I explore different levels of description of this space: its evolution over time, its curvature, and categorical models of its compositionality. The vast majority of the chemical literature focuses on investigations of particular aspects of some substances or reactions, which have been systematically recorded in comprehensive databases such as Reaxys for the last 200 years. While complexity science has made important advances in physics, biology, economics, and many other fields, it has somewhat neglected chemistry. In this work, I propose to take a global view of chemistry and to combine complexity science tools, modern data analysis techniques, and geometric and compositional theories to explore chemical space. This provides a novel view of chemistry, its history, and its current status. We argue that a large directed hypergraph, that is, a model of directed relations between sets, underlies chemical space and that a systematic study of this structure is a major challenge for chemistry. Using the Reaxys database as a proxy for chemical space, we search for large-scale changes in a directed hypergraph model of chemical knowledge and present a data-driven approach to navigate through its history and evolution. These investigations focus on the mechanistic features by which this space has been expanding: the role of synthesis and extraction in the production of new substances, patterns in the selection of starting materials, and the frequency with which reactions reach new regions of chemical space. Large-scale patterns that emerged in the last two centuries of chemical history are detected, in particular, in the growth of chemical knowledge, the use of reagents, and the synthesis of products, which reveal both conservatism and sharp transitions in the exploration of the space. Furthermore, since chemical similarity of substances arises from affinity patterns in chemical reactions, we quantify the impact of changes in the diversity of the space on the formulation of the system of chemical elements. In addition, we develop formal tools to probe the local geometry of the resulting directed hypergraph and introduce the Forman-Ricci curvature for directed and undirected hypergraphs. This notion of curvature is characterized by applying it to social and chemical networks with higher order interactions, and then used for the investigation of the structure and dynamics of chemical space. The network model of chemistry is strongly motivated by the observation that the compositional nature of chemical reactions must be captured in order to build a model of chemical reasoning. A step forward towards categorical chemistry, that is, a formalization of all the flavors of compositionality in chemistry, is taken by the construction of a categorical model of directed hypergraphs. We lifted the structure from a lineale (a poset version of a symmetric monoidal closed category) to a category of Petri nets, whose wiring is a bipartite directed graph equivalent to a directed hypergraph. The resulting construction, based on the Dialectica categories introduced by Valeria De Paiva, is a symmetric monoidal closed category with finite products and coproducts, which provides a formal way of composing smaller networks into larger in such a way that the algebraic properties of the components are preserved in the resulting network. Several sets of labels, often used in empirical data modeling, can be given the structure of a lineale, including: stoichiometric coefficients in chemical reaction networks, reaction rates, inhibitor arcs, Boolean interactions, unknown or incomplete data, and probabilities. Therefore, a wide range of empirical data types for chemical substances and reactions can be included in our model

    Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

    Get PDF
    The paper extends Bayesian networks (BNs) by a mechanism for dynamic changes to the probability distributions represented by BNs. One application scenario is the process of knowledge acquisition of an observer interacting with a system. In particular, the paper considers condition/event nets where the observer\u27s knowledge about the current marking is a probability distribution over markings. The observer can interact with the net to deduce information about the marking by requesting certain transitions to fire and observing their success or failure. Aiming for an efficient implementation of dynamic changes to probability distributions of BNs, we consider a modular form of networks that form the arrows of a free PROP with a commutative comonoid structure, also known as term graphs. The algebraic structure of such PROPs supplies us with a compositional semantics that functorially maps BNs to their underlying probability distribution and, in particular, it provides a convenient means to describe structural updates of networks

    Calculating the Warshall/Floyd path algorithm

    Get PDF
    • …
    corecore