32 research outputs found

    A Deep Learning Approach to Evaluating Disease Risk in Coronary Bifurcations

    Full text link
    Cardiovascular disease represents a large burden on modern healthcare systems, requiring significant resources for patient monitoring and clinical interventions. It has been shown that the blood flow through coronary arteries, shaped by the artery geometry unique to each patient, plays a critical role in the development and progression of heart disease. However, the popular and well tested risk models such as Framingham and QRISK3 current cardiovascular disease risk models are not able to take these differences when predicting disease risk. Over the last decade, medical imaging and image processing have advanced to the point that non-invasive high-resolution 3D imaging is routinely performed for any patient suspected of coronary artery disease. This allows for the construction of virtual 3D models of the coronary anatomy, and in-silico analysis of blood flow within the coronaries. However, several challenges still exist which preclude large scale patient-specific simulations, necessary for incorporating haemodynamic risk metrics as part of disease risk prediction. In particular, despite a large amount of available coronary medical imaging, extraction of the structures of interest from medical images remains a manual and laborious task. There is significant variation in how geometric features of the coronary arteries are measured, which makes comparisons between different studies difficult. Modelling blood flow conditions in the coronary arteries likewise requires manual preparation of the simulations and significant computational cost. This thesis aims to solve these challenges. The "Automated Segmentation of Coronary Arteries (ASOCA)" establishes a benchmark dataset of coronary arteries and their associated 3D reconstructions, which is currently the largest openly available dataset of coronary artery models and offers a wide range of applications such as computational modelling, 3D printed for experiments, developing, and testing medical devices such as stents, and Virtual Reality applications for education and training. An automated computational modelling workflow is developed to set up, run and postprocess simulations on the Left Main Bifurcation and calculate relevant shape metrics. A convolutional neural network model is developed to replace the computational fluid dynamics process, which can predict haemodynamic metrics such as wall shear stress in minutes, compared to several hours using traditional computational modelling reducing the computation and labour cost involved in performing such simulations

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    Deep learning for corneal and retinal image analysis:AI for your eye

    Get PDF
    corecore