4,193 research outputs found

    Urinary Tract Infection Bacteria Classification: Artificial Intelligence-based Medical Application

    Get PDF
    Urinary tract infection (UTI) is a type of health disorder, an infection in the urinary glands mainly caused by bacteria. Currently, conventional early detection methods that have been established involve rapid dipstick strip test and urine culture analysis, which have suboptimal accuracy and effectiveness. Several retrospective studies regarding UTI bacteria classification have shown promising results, but still have limitations regarding prediction accuracy and technical simplicity. This study aims to implement a method based on artificial intelligence (AI) in classifying images of bacteria that causes UTIs. Eight artificial intelligence methods based on deep neural networks were used in the study; the models were evaluated and compared based on the prediction's effectiveness and accuracy. This study also seeks to create the easiest method of classifying bacteria causing UTIs using a computer-based application with the best obtained AI-based model. The best training results using an intelligent approach placed DenseNet201 as the method with the highest accuracy (83.99%). Then, the output model was used as a knowledge reference for the designed computer-based application. Real-time prediction results will appear in the application window

    Urinary Tract Infection Analysis using Machine Learning based Classification and ANN- A Study of Prediction

    Get PDF
    Urinary tract infection is the most frequently diagnosed infection among humans. A urinary tract infection (UTI) affects the areas of urinary system which includes the ureters, bladder, kidneys and urethra. The primary infected area of urinary system involves the lower tract i.e. bladder and urethra. The infection in bladder is painful as well as uncomfortable but if it spreads to kidneys, it can have severe consequences. Women are more susceptible to urinary infection in comparison to men due to their physiology. This paper aims to study and assess the impact and causes of urinary tract infection in human beings and evaluate the machine learning approach for urinary disease forecasting. The paper also proposed machine learning based methodology for the prediction of the urinary infection and estimating the outcomes of the designed procedures over real-time data and validating the same. The paper focuses to get high prediction accuracy of UTI using confusion matrix by Machine Based Classification and ANN technique. Some specific parameters have been selected with the help of Analysis of variance technique. The naive bayes classifier, J48 decision tree algorithm, and Artificial neural network have been used for the prediction of presence of urinary infection. The accuracy achieved by the proposed model is 95.5% approximately

    Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship

    Get PDF
    Background: A correct approach to recurrent urinary tract infections (rUTIs) is an important pillar of antimicrobial stewardship. We aim to define an Artificial Neural Network (ANN) for predicting the clinical efficacy of the empiric antimicrobial treatment in women with rUTIs. Methods: We extracted clinical and microbiological data from 1043 women. We trained an ANN on 725 patients and validated it on 318. Results: The ANN showed a sensitivity of 87.8% and specificity of 97.3% in predicting the clinical efficacy of empirical therapy. The previous use of fluoroquinolones (HR = 4.23; p = 0.008) and cephalosporins (HR = 2.81; p = 0.003) as well as the presence of Escherichia coli with resistance against cotrimoxazole (HR = 3.54; p = 0.001) have been identified as the most important variables affecting the ANN output decision predicting the fluoroquinolones-based therapy failure. A previous isolation of Escherichia coli with resistance against fosfomycin (HR = 2.67; p = 0.001) and amoxicillin-clavulanic acid (HR = 1.94; p = 0.001) seems to be the most influential variable affecting the output decision predicting the cephalosporins- and cotrimoxazole-based therapy failure. The previously mentioned Escherichia coli with resistance against cotrimoxazole (HR = 2.35; p < 0.001) and amoxicillin-clavulanic acid (HR = 3.41; p = 0.007) seems to be the most influential variable affecting the output decision predicting the fosfomycin-based therapy failure. Conclusions: ANNs seem to be an interesting tool to guide the antimicrobial choice in the management of rUTIs at the point of care

    A Novel IoT-based Framework for Urine Infection Detection and Prediction using Ensemble Bagging Decision Tree Classifier

    Get PDF
    One of the most common conditions treated in adult primary care medicine is Urinary Tract Infection (UTI), which accounts for a sizeable portion of antibiotic prescriptions. A high degree of diagnostic accuracy is necessary because this issue is so prevalent and important in everyday clinical practice. Particularly in light of the rising prevalence of antibiotic resistance, excessive antibiotic prescriptions should be avoided. To examine the machine learning approach and Internet of Things (IoT) for urinary tract infections, this research proposes an Ensemble Bagging Decision Tree Classifier (EBDTC). In our study, to learn more about UTI, we conducted a study in which we collected the physiological data of 399 patients and preprocessed them using the min-max scalar normalization. Feature extraction using Principle Component Analysis (PCA) and classification using Ensemble Bagging Decision Tree Classifier (EBDTC). The performance outcomes of accuracy (96.25%), precision(96.22%), recall (98.07%), and f-1 measure(97.17%) demonstrate the proposed strategy's significantly improved performance in comparison to other baseline existing techniques

    A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology.

    Get PDF
    BackgroundTesting a hypothesis for 'factors-outcome effect' is a common quest, but standard statistical regression analysis tools are rendered ineffective by data contaminated with too many noisy variables. Expert Systems (ES) can provide an alternative methodology in analysing data to identify variables with the highest correlation to the outcome. By applying their effective machine learning (ML) abilities, significant research time and costs can be saved. The study aims to systematically review the applications of ES in urological research and their methodological models for effective multi-variate analysis. Their domains, development and validity will be identified.MethodsThe PRISMA methodology was applied to formulate an effective method for data gathering and analysis. This study search included seven most relevant information sources: WEB OF SCIENCE, EMBASE, BIOSIS CITATION INDEX, SCOPUS, PUBMED, Google Scholar and MEDLINE. Eligible articles were included if they applied one of the known ML models for a clear urological research question involving multivariate analysis. Only articles with pertinent research methods in ES models were included. The analysed data included the system model, applications, input/output variables, target user, validation, and outcomes. Both ML models and the variable analysis were comparatively reported for each system.ResultsThe search identified n = 1087 articles from all databases and n = 712 were eligible for examination against inclusion criteria. A total of 168 systems were finally included and systematically analysed demonstrating a recent increase in uptake of ES in academic urology in particular artificial neural networks with 31 systems. Most of the systems were applied in urological oncology (prostate cancer = 15, bladder cancer = 13) where diagnostic, prognostic and survival predictor markers were investigated. Due to the heterogeneity of models and their statistical tests, a meta-analysis was not feasible.ConclusionES utility offers an effective ML potential and their applications in research have demonstrated a valid model for multi-variate analysis. The complexity of their development can challenge their uptake in urological clinics whilst the limitation of the statistical tools in this domain has created a gap for further research studies. Integration of computer scientists in academic units has promoted the use of ES in clinical urological research

    Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature

    Get PDF
    Background: Healthcare-associated infections (HAIs) are the most frequent adverse events in healthcare and a global public health concern. Surveillance is the foundation for effective HAIs prevention and control. Manual surveillance is labor intensive, costly and lacks standardization. Artificial Intelligence (AI) and machine learning (ML) might support the development of HAI surveillance algorithms aimed at understanding HAIs risk factors, improve patient risk stratification, identification of transmission pathways, timely or real-time detection. Scant evidence is available on AI and ML implementation in the field of HAIs and no clear patterns emerges on its impact. Methods: We conducted a systematic review following the PRISMA guidelines to systematically retrieve, quantitatively pool and critically appraise the available evidence on the development, implementation, performance and impact of ML-based HAIs detection models. Results: Of 3445 identified citations, 27 studies were included in the review, the majority published in the US (n = 15, 55.6%) and on surgical site infections (SSI, n = 8, 29.6%). Only 1 randomized controlled trial was included. Within included studies, 17 (63%) ML approaches were classified as predictive and 10 (37%) as retrospective. Most of the studies compared ML algorithms' performance with non-ML logistic regression statistical algorithms, 18.5% compared different ML models' performance, 11.1% assessed ML algorithms' performance in comparison with clinical diagnosis scores, 11.1% with standard or automated surveillance models. Overall, there is moderate evidence that ML-based models perform equal or better as compared to non-ML approaches and that they reach relatively high-performance standards. However, heterogeneity amongst the studies is very high and did not dissipate significantly in subgroup analyses, by type of infection or type of outcome. Discussion: Available evidence mainly focuses on the development and testing of HAIs detection and prediction models, while their adoption and impact for research, healthcare quality improvement, or national surveillance purposes is still far from being explored

    Prediction of Severity of Diabetes Mellitus using Fuzzy Cognitive Maps

    Get PDF
    The objective to develop this research paper is concerned with a system which helps diagnose the severity of diabetes. The disease named diabetes mellitus makes the body unable to handle sugar so it causes thirst, frequency of urination, tiredness and many other symptoms. The diabetes mellitus describes a metabolic disorder characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. It can be caused by number of factors like pancreatic dysfunction, obesity, hereditary, stress, drugs, alcohol etc. It includes long term damage, dysfunction and failure of various organs. The effects of diabetes mellitus include long term damage and failure of various organs. Diabetes mellitus may present with characteristic symptoms such as thirst, polyuria, blurring of vision, and weight loss. This Paper is implemented on soft computing technique, namely Fuzzy Cognitive Maps (FCM) to find out the presence or absence of diabetes mellitus based on the input of sign/symptoms recorded at three fuzzy levels developed by the domain experts. The large amount of data and information that needs to be handled and integrated requires specific methodologies and tools. The FCM based decision support system was developed with a view to help medical and nursing personnel to assess patient status assist in making a diagnosis. The software tool was tested on 50 cases, showing results with an accuracy of 96%. The analysis of experimental results of different applicants checks the correctness and consistency of decision Support system for correct decision making. Keywords: Fuzzy Logic, FCM, Diabetes Mellitus, Prediction, Symptoms

    A Multi-model Approach in Developing an Intelligent Assistant for Diagnosis Recommendation in Clinical Health Systems

    Get PDF
    Clinical health information systems capture massive amounts of unstructured data from various health and medical facilities. This study utilizes unstructured patient clinical text data to develop an intelligent assistant that can identify possible related diagnoses based on a given text input. The approach applies a one-vs-rest binary classification technique wherein given an input text data, it is identified whether it can be positively or negatively classified for a given diagnosis. Multi-layer Feed-Forward Neural Network models were developed for each individual diagnosis case. The task of the intelligent assistant is to iterate over all the different models and return those that output a positive diagnosis. To validate the performance of the models, the performance metrics were compared against Naive Bayes, Decision Trees, and K-Nearest Neighbor. The results show that the neural network learner provided better performance scores in both accuracy and area under the curve metric scores. Further, testing on multiple diagnoses also shows that the methodology for developing the diagnosis models can be replicated for development of models for other diseases as well

    Minimally Invasive Urological Procedures and Related Technological Developments

    Get PDF
    The landscape of minimally invasive urological intervention is changing. A lot of new innovations and technological developments have happened over the last 3 decades. Laparoscopy and robotic surgery have revolutionised kidney and prostate cancer treatment, with more minimally invasive procedures now being carried out than ever before. At the same time, technological advancements and the use of laser have changed the face of endourology. Several new innovative treatments are now commonplace for benign prostate enlargement (BPE). Management of prostate cancer now involves procedures such as robotic prostatectomy, brachytherapy, radiotherapy, cryotherapy and HIFU. Robotic partial nephrectomy and cryotherapy have changed the face of renal cancer. En-bloc resection of bladder cancer is challenging the traditional management of non-muscle invasive bladder cancer and becoming commonplace, while robotic cystectomy is also gaining popularity for muscle invasive bladder cancer. Newer surgical intervention related to BPE includes laser (holmium, thulium and green light), water-based treatment (Rezum, Aquablation) and other minimally invasive procedures such as prostate artery embolisation (PAE) and Urolift. Endourological procedures have incorporated newer laser types and settings such as moses technology, disposable ureteroscopes (URS) and minimisation of percutaneous nephrolithotomy (PCNL) instruments. All these technological innovations and improvements have led to shorter hospital stay, reduced cost, potential reduction in complications and improvement in the quality of life (QoL)
    • …
    corecore