1,087 research outputs found

    DETECTION OF PNEUMONIA BY USING NINE PRE-TRAINED TRANSFER LEARNING MODELS BASED ON DEEP LEARNING TECHNIQUES

    Get PDF
    Pneumonia is a serious chest disease that affects the lungs. This disease has become an important issue that must be taken care of in the field of medicine due to its rapid and intense spread, especially among people who are addicted to smoking. This paper presents an efficient prediction system for detecting pneumonia using nine pre-trained transfer learning models based on deep learning technique (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121, DenseNet-169, AlexNet, and SqueezeNet). The dataset in this study consisted of 5856 chest x-rays, which were divided into 5216 for training and 624 for the test. In the training phase, the images were pre-processed by resizing the input images to the same dimensions to reduce complexity and computation. The images are then forwarded to the proposed models (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121, DenseNet-169, AlexNet, SqueezeNet) to extract features and classify the images as normal or pneumonia. The results of the proposed models (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121 DenseNet-169, AlexNet and SqueezeNet) give accuracies (98.72%, 98.94%, 98.88%, 98.72%, 96.2%, 94.69%, 96.29%, 95.01% and 96.10%) respectively. We found that the SeNet-154 model gave the best result with an accuracy of 98.94% with a validation loss (0.018103). When comparing our results with older studies, it should be noted that the proposed method is superior to other methods

    COVID-19 and Computer Audition: An Overview on What Speech & Sound Analysis Could Contribute in the SARS-CoV-2 Corona Crisis

    Get PDF
    At the time of writing, the world population is suffering from more than 10,000 registered COVID-19 disease epidemic induced deaths since the outbreak of the Corona virus more than three months ago now officially known as SARS-CoV-2. Since, tremendous efforts have been made worldwide to counter-steer and control the epidemic by now labelled as pandemic. In this contribution, we provide an overview on the potential for computer audition (CA), i.e., the usage of speech and sound analysis by artificial intelligence to help in this scenario. We first survey which types of related or contextually significant phenomena can be automatically assessed from speech or sound. These include the automatic recognition and monitoring of breathing, dry and wet coughing or sneezing sounds, speech under cold, eating behaviour, sleepiness, or pain to name but a few. Then, we consider potential use-cases for exploitation. These include risk assessment and diagnosis based on symptom histograms and their development over time, as well as monitoring of spread, social distancing and its effects, treatment and recovery, and patient wellbeing. We quickly guide further through challenges that need to be faced for real-life usage. We come to the conclusion that CA appears ready for implementation of (pre-)diagnosis and monitoring tools, and more generally provides rich and significant, yet so far untapped potential in the fight against COVID-19 spread

    Detecting COVID-19 from breathing and coughing sounds using deep neural networks

    Get PDF

    Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey

    Full text link
    Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory system. Reliable and accurate detection of cough events by investigating the underlying cough latent features and disease diagnosis can play an indispensable role in revitalizing the healthcare practices. The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend and myriad of future possibilities in the medical domain. In particular, there is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting cough signatures. The enormous body of literature on cough-based AI algorithms demonstrate that these models can play a significant role for detecting the onset of a specific respiratory disease. However, it is pertinent to collect the information from all relevant studies in an exhaustive manner for the medical experts and AI scientists to analyze the decisive role of AI/ML. This survey offers a comprehensive overview of the cough data-driven ML/DL detection and preliminary diagnosis frameworks, along with a detailed list of significant features. We investigate the mechanism that causes cough and the latent cough features of the respiratory modalities. We also analyze the customized cough monitoring application, and their AI-powered recognition algorithms. Challenges and prospective future research directions to develop practical, robust, and ubiquitous solutions are also discussed in detail.Comment: 30 pages, 12 figures, 9 table

    SPARC 2018 Internationalisation and collaboration : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2018 SPARC conference. This year we not only celebrate the work of our PGRs but also the launch of our Doctoral School, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 100 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    A framework for automated heart and lung sound analysis using a mobile telemedicine platform

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 246-261).Many resource-poor communities across the globe lack access to quality healthcare,due to shortages in medical expertise and poor availability of medical diagnostic devices. In recent years, mobile phones have become increasingly complex and ubiquitous. These devices present a tremendous opportunity to provide low-cost diagnostics to under-served populations and to connect non-experts with experts. This thesis explores the capture of cardiac and respiratory sounds on a mobile phone for analysis, with the long-term aim of developing intelligent algorithms for the detection of heart and respiratory-related problems. Using standard labeled databases, existing and novel algorithms are developed to analyze cardiac and respiratory audio data. In order to assess the algorithms' performance under field conditions, a low-cost stethoscope attachment is constructed and data is collected using a mobile phone. Finally, a telemedicine infrastructure and work-flow is described, in which these algorithms can be deployed and trained in a large-scale deployment.by Katherine L. Kuan.M.Eng

    Human-centred artificial intelligence for mobile health sensing:challenges and opportunities

    Get PDF
    Advances in wearable sensing and mobile computing have enabled the collection of health and well-being data outside of traditional laboratory and hospital settings, paving the way for a new era of mobile health. Meanwhile, artificial intelligence (AI) has made significant strides in various domains, demonstrating its potential to revolutionize healthcare. Devices can now diagnose diseases, predict heart irregularities and unlock the full potential of human cognition. However, the application of machine learning (ML) to mobile health sensing poses unique challenges due to noisy sensor measurements, high-dimensional data, sparse and irregular time series, heterogeneity in data, privacy concerns and resource constraints. Despite the recognition of the value of mobile sensing, leveraging these datasets has lagged behind other areas of ML. Furthermore, obtaining quality annotations and ground truth for such data is often expensive or impractical. While recent large-scale longitudinal studies have shown promise in leveraging wearable sensor data for health monitoring and prediction, they also introduce new challenges for data modelling. This paper explores the challenges and opportunities of human-centred AI for mobile health, focusing on key sensing modalities such as audio, location and activity tracking. We discuss the limitations of current approaches and propose potential solutions

    Sound-Dr: Reliable Sound Dataset and Baseline Artificial Intelligence System for Respiratory Illnesses

    Full text link
    As the burden of respiratory diseases continues to fall on society worldwide, this paper proposes a high-quality and reliable dataset of human sounds for studying respiratory illnesses, including pneumonia and COVID-19. It consists of coughing, mouth breathing, and nose breathing sounds together with metadata on related clinical characteristics. We also develop a proof-of-concept system for establishing baselines and benchmarking against multiple datasets, such as Coswara and COUGHVID. Our comprehensive experiments show that the Sound-Dr dataset has richer features, better performance, and is more robust to dataset shifts in various machine learning tasks. It is promising for a wide range of real-time applications on mobile devices. The proposed dataset and system will serve as practical tools to support healthcare professionals in diagnosing respiratory disorders. The dataset and code are publicly available here: https://github.com/ReML-AI/Sound-Dr/.Comment: 9 pages, PHMAP2023, PH

    Multimedia sensors embedded in smartphones for ambient assisted living and e-health

    Full text link
    The final publication is available at link.springer.com[EN] Nowadays, it is widely extended the use of smartphones to make human life more comfortable. Moreover, there is a special interest on Ambient Assisted Living (AAL) and e-Health applications. The sensor technology is growing and amount of embedded sensors in the smartphones can be very useful for AAL and e-Health. While some sensors like the accelerometer, gyroscope or light sensor are very used in applications such as motion detection or light meter, there are other ones, like the microphone and camera which can be used as multimedia sensors. This paper reviews the published papers focused on showing proposals, designs and deployments of that make use of multimedia sensors for AAL and e-health. We have classified them as a function of their main use. They are the sound gathered by the microphone and image recorded by the camera. We also include a comparative table and analyze the gathered information.Parra-Boronat, L.; Sendra, S.; Jimenez, JM.; Lloret, J. (2016). Multimedia sensors embedded in smartphones for ambient assisted living and e-health. Multimedia Tools and Applications. 75(21):13271-13297. doi:10.1007/s11042-015-2745-8S13271132977521Acampora G, Cook DJ, Rashidi P, Vasilakos AV (2013) A survey on ambient intelligence in healthcare. Proc IEEE 101(12):2470–2494Al-Attas R, Yassine A, Shirmohammadi S (2012) Tele-Medical Applications in Home-Based Health Care. In proceeding of the 2012 I.E. International Conference on Multimedia and Expo Workshops (ICMEW 2012). Jul. 9–13, 2012. Melbourne, Australia. (pp. 441–446)Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710Alqassim S, Ganesh M, Khoja S, Zaidi M, Aloul F, Sagahyroon A (2012) Sleep apnea monitoring using mobile phones. In proceedings of the 14th International Conference on e-Health Networking, Applications and Services (Healthcom 2012). Oct. 10 – 13, 2012. Beijing, China. (pp. 443–446)Anderson G, Horvath J (2004) The growing burden of chronic disease in America. Public Health Rep 119(3):263–270Aquilano M, Cavallo F, Bonaccorsi M, Esposito R, Rovini E, Filippi M, Carrozza MC (2012) Ambient assisted living and ageing: Preliminary results of RITA project. In proceedings of 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2012), Aug. 28-Sept. 1, 2012. San Diego USA. (pp. 5823–5826)Bellini P, Bruno I, Cenni D, Fuzier A, Nesi P, Paolucci M (2012) Mobile Medicine: semantic computing management for health care applications on desktop and mobile devices. Multimed Tools Appl 58(1):41–79Boulos MN, Wheeler S, Tavares C, Jones R (2011) How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomed Eng Online 10(1):24Bourouis A, Feham M, Hossain MA, Zhang L (2014) An intelligent mobile based decision support system for retinal disease diagnosis. Decis Support Syst 59(2014):341–350Bourouis A, Zerdazi A, Feham M, Bouchachia A (2013) M-health: skin disease analysis system using Smartphone’s camera. Procedia Comput Sci 19(2013):1116–1120M.W. Brault, (2010). Americans With Disabilities: 2010. Household Economic Studies. In United States Census Bureau website. Available at: www.census.gov/prod/2012pubs/p70-131.pdf Last Access 16 Dec 2014Breath Counter App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.softrove.app.bc Last Access 30 Nov 2014Cardinaux F, Bhowmik D, Abhayaratne C, Hawley MS (2011) Video based technology for ambient assisted living: a review of the literature. J Ambient Intell Smart Environ 3(3):253–269Cardiograph App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.macropinch.hydra.android . Last Access 30 Nov 2014Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2012) A review on vision techniques applied to human behaviour analysis for ambient-assisted living. Expert Syst Appl 39(12):10873–10888Chen NC, Wang KC, Chu HH (2012) Listen-to-nose: a low-cost system to record nasal symptoms in daily life. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UBIComp 2012). Sep. 05–08, 2012. Pittsburgh, USA. (pp. 590–591)Chiarini G, Ray P, Akter S, Masella C, Ganz A (2013) mHealth technologies for chronic diseases and elders: a systematic review. IEEE J Sel Areas Commun 31(9):6–18Color Detector App In Google Play website. Available at: //play.google.com/store/apps/details?id = com.mobialia.colordetector. Last Access 30 Nov 2014Colorblind Assitant App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.unclechromedome.colorblindassistant . Last Access 30 Nov 2014Dale O, Solheim I, Halbach T, Schulz T, Spiru L, Turcu I (2013) What seniors want in a mobile Help-On-Demand service. In proceedings of the Fifth International Conference on eHealth, Telemedicine, and Social Medicine (eTELEMED 2013). Feb. 24 – Mar. 1, 2013. Nice, France. (pp. 96–101)Estepa AJ, Estepa R, Vozmediano J, Carrillo P (2014) Dynamic VoIP codec selection on smartphones. Netw Protoc Algoritm 6(2):22–37Falk TH, Maier M (2013) Context awareness in WBANs: a survey on medical and non-medical applications. IEEE Wirel Commun 20(4):30–37Franco C, Fleury A, Guméry PY, Diot B, Demongeot J, Vuillerme N (2013) iBalance-ABF: a smartphone-based audio-biofeedback balance system. IEEE Trans Biomed Eng 60(1):211–215García M, Lloret J, Bellver I, Tomás J (2013) Intelligent IPTV Distribution for Smart Phones (Book Chapter 13). In Intelligent Multimedia Technologies for Networking Applications. IGI GlobalGregoski MJ, Mueller M, Vertegel A, Shaporev A, Jackson BB, Frenzel RM, Treiber FA (2012) Development and validation of a smartphone heart rate acquisition application for health promotion and wellness telehealth applications. Int J Telemed Appl 2012, 1. Article ID 696324Grimaldi D, Kurylyak Y, Lamonaca F, Nastro A (2011) Photoplethysmography detection by smartphone’s videocamera. In proceedings of the 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IEEE IDAACS 2011), Sep. 15–17, 2011. Prague, Czech Republic. (Vol. 1, pp. 488–491)Gurrin C, Qiu Z, Hughes M, Caprani N, Doherty AR, Hodges SE, Smeaton AF (2013) The smartphone as a platform for wearable cameras in health research. Am J Prev Med 44(3):308–313Haché G, Lemaire ED, Baddour N (2011) Wearable mobility monitoring using a multimedia smartphone platform. IEEE Trans Instrum Meas 60(9):3153–3161Heathers JA (2013) Smartphone-enabled pulse rate variability: an alternative methodology for the collection of heart rate variability in psychophysiological research. Int J Psychophysiol 89(3):297–304Hoseini-Tabatabaei SA, Gluhak A, Tafazolli R (2013) A survey on smartphone-based systems for opportunistic user context recognition. ACM Comput Surv (CSUR) 45(3):1–51, Paper No. 27Illiger K, Hupka M, von Jan U, Wichelhaus D, Albrecht UV (2014) Mobile technologies: expectancy, usage, and acceptance of clinical staff and patients at a University Medical Center. JMIR mHealth uHealth 2(4), e42Kanjo E (2012) Tools and architectural support for mobile phones based crowd control systems. Netw Protoc Algoritm 4(3):4–14Kawano Y, Yanai K (2014) FoodCam: a real-time food recognition system on a smartphone. Multimedia Tools and Applications,Published online:April 2014: 1–25Khan FH, Khan ZH (2010) A systematic approach for developing mobile information system based on location based services. Netw Protoc Algoritm 2(2):54–65Kochanov D, Jonas S, Hamadeh N, Yalvac E, Slijp H, Deserno TM (2014) Urban Positioning Using Smartphone-Based Imaging. In Bildverarbeitung für die Medizin, 2014: 186–191Kurniawan S (2008) Older people and mobile phones: a multi-method investigation. Int J Human-Comput Stud 66(12):889–901Lacuesta R, Lloret J, Sendra S, Peñalver L (2014) Spontaneous Ad Hoc mobile cloud computing network. Sci World J 2014:1–19Lakens D (2013) Using a Smartphone to measure heart rate changes during relived happiness and anger. IEEE Trans Affect Comput 5(3):217–226Larson EC, Goel M, Boriello G, Heltshe S, Rosenfeld M, Patel SN (2012) Spirosmart: using a microphone to measure lung function on a mobile phone, In proceedings of the 2012 ACM Conference on Ubiquitous Computing (UBIComp 2012). Sep. 05–08, 2012. Pittsburgh, USA. (pp. 280–289)Lee J, Reyes BA, McManus DD, Mathias O, Chon KH (2012) Atrial fibrillation detection using a smart phone. In proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2012). Aug.28-Sep.1, 2012. San Diego, (pp. 1177–1180)Lloret J, Garcia M, Bri D, Diaz JR (2009) A cluster-based architecture to structure the topology of parallel wireless sensor networks. Sensors (Basel) 9(12):10513–10544Lu H, Frauendorfer D, Rabbi M, Mast MS, Chittaranjan GT, Campbell AT, Gatica-Perez D, Choudhury T (2012) StressSense: detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UBIComp 2012). Sep. 05–08, 2012. Pittsburgh, USA. (pp. 351–360)Macías E, Abdelfatah H, Suárez A, Cánovas A (2011) Full geo-localized mobile video in Android mobile telephones. Netw Protoc Algoritm 3(1):64–81Macias E, Lloret J, Suarez A, Garcia M (2012) Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices. Sensors 12(2):2062–2087Macias E, Suarez A, Lloret J (2013) Mobile sensing systems. Sensors 13(12):17292–17321MedCam App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.cupel.MedCam . Last Access 30 Nov 2014Monteiro DM, Rodrigues JJ, Lloret J, Sendra S (2014) A hybrid NFC–Bluetooth secure protocol for Credit Transfer among mobile phones. Secur Commun Netw 7(2):325–337Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12(1):67MyEarDroid App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.tecnalia.health.myeardroid . Last Access 30 Nov 2014O’Grady MJ, Muldoon C, Dragone M, Tynan R, O’Hare GM (2010) Towards evolutionary ambient assisted living systems. J Ambient Intell Humaniz Comput 1(1):15–29Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28(6):976–990Quit Snoring App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.ptech_hm.qs . Last Access 30 Nov 2014Rahman MA, Hossain MS, El Saddik A (2013) Context-aware multimedia services modeling: an e-Health perspective. Multimed Tools Appl 73(3):1147–1176Sendra S, Granell E, Lloret J, Rodrigues JJPC (2014) Smart collaborative mobile system for taking care of disabled and elderly people. Mob Netw Appl 19(3):287–302Smartphone Milestone: Half of Mobile Subscribers Ages 55+ Own Smartphones Mobile. Online report.(April 22,2014). In the Nielsen Company website. Available at: http://www.nielsen.com/us/en/insights/news/2014/smartphone-milestone-half-of-americans-ages-55-own-smartphones.html Last Access 25 Nov 2014Smith A (2013) Smartphone Ownership 2013. On-line Report June 5, 2013. In Pew Research Center’s Internet & American Life Project website. Available at: http://www.pewinternet.org/2013/06/05/smartphone-ownership-2013/ Last Access 25 Nov 2014SnoreClock App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=de.ralphsapps.snorecontrol Last Access 30 Nov 2014Storf H, Kleinberger T, Becker M, Schmitt M, Bomarius F, Prueckner S (2009) An event-driven approach to activity recognition in ambient assisted living. Lect Notes Comput Sci 5859:123–132Su X, Tong H, Ji P (2014) Activity recognition with smartphone sensors. Tsinghua Sci Technol 19(3):235–249Tapu R, Mocanu B, Bursuc A, Zaharia T (2013) A smartphone-based obstacle detection and classification system for assisting visually impaired people. In proceedings of the 2013 I.E. International Conference on Computer Vision Workshops (ICCVW 2013). Dec. 2–8, 2013. Sydney, Australia. (pp. 444–451)The vOICe for Android App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=vOICe.vOICe . Last Access 30 Nov 2014Tudzarov A, Janevski T (2011) Protocols and algorithms for the next generation 5G mobile systems. Netw Protoc Algoritm 3(1):94–114Tyagi A, Miller K, Cockburn M (2012) e-Health tools for targeting and improving melanoma screening: a review. J Skin Cancer 2012, Article ID 437502Voice Cam for Blind App. In Google Play website. Available at: https://play.google.com/store/apps/details?id=com.prod.voice.cam Last Access 30 Nov 2014Wadhawan T, Situ N, Rui H, Lancaster K, Yuan X, Zouridakis G (2011) Implementation of the 7-point checklist for melanoma detection on smart handheld devices. In proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (EMBC 2011). Aug. 30- Sep 03, 2011. Boston, MA, USA (pp. 3180–3183)Xiong H, Zhang D, Zhang D, Gauthier V (2012) Predicting mobile phone user locations by exploiting collective behavioral patterns. In proceedings of the 9th International Conference on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC). 4–7 Sept. 2012. Fukuoka, Japan. (pp. 164–171)Xu X, Shu L, Guizani M, Liu M, Lu J (2014) A survey on energy harvesting and integrated data sharing in wireless body area networks. Int J Distrib Sens Netw. Article ID 438695Yu W, Su X, Hansen J (2012) A smartphone design approach to user communication interface for administering storage system network. Netw Protoc Algoritm 4(4):126–155Zhang D, Vasilakos AV, Xiong H (2012) Predicting location using mobile phone calls. ACM SIGCOMM Comput Commun Rev 42(4):295–296Zhang D, Xiong H, Yang L, Gauither V (2013) NextCell: predicting location using social interplay from cell phone traces. EEE Trans Comput 64(2):452–46
    • …
    corecore