95,189 research outputs found

    Selection of sensors by a new methodology coupling a classification technique and entropy criteria

    Get PDF
    Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the works on fault detection and diagnosis found in literature emphasis more on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the "Open Plate Reactor (OPR)", developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction

    Jini Technology Applied to Railway Systems

    Get PDF
    In the world of pervasive computing where large management systems, as well as small devices, all become interconnected, the problem of the configuration and management of networks is becoming increasingly complex. System administrators have to deal with many problems due to the increasingly distributed architecture of systems. Jini, a new paradigm for the development and management of distributed systems, provides mechanisms that enable systems to plug together to form an impromptu community. This practice report demonstrates how Jini can be applied in an industrial environment, or more exactly how it can be used in the integration of embedded devices on-board trains in the back-office IT infrastructure of railway operators. We present two use cases: the first is about an on-board service that allows for remote access to an on-board diagnosis databas

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    A distributed architecture to implement a prognostic function for complex systems

    Get PDF
    The proactivity in maintenance management is improved by the implementation of CBM (Condition-Based Maintenance) principles and of PHM (Prognostic and Health Management). These implementations use data about the health status of the systems. Among them, prognostic data make it possible to evaluate the future health of the systems. The Remaining Useful Lifetimes (RULs) of the components is frequently required to prognose systems. However, the availability of complex systems for productive tasks is often expressed in terms of RULs of functions and/or subsystems; those RULs have to bring information about the components. Indeed, the maintenance operators must know what components need maintenance actions in order to increase the RULs of the functions or subsystems, and consequently the availability of the complex systems for longer tasks or more productive tasks. This paper aims at defining a generic prognostic function of complex systems aiming at prognosing its functions and at enabling the isolation of components that needs maintenance actions. The proposed function requires knowledge about the system to be prognosed. The corresponding models are detailed. The proposed prognostic function contains graph traversal so its distribution is proposed to speed it up. It is carried out by generic agents

    A framework for effective management of condition based maintenance programs in the context of industrial development of E-Maintenance strategies

    Get PDF
    CBM (Condition Based Maintenance) solutions are increasingly present in industrial systems due to two main circumstances: rapid evolution, without precedents, in the capture and analysis of data and significant cost reduction of supporting technologies. CBM programs in industrial systems can become extremely complex, especially when considering the effective introduction of new capabilities provided by PHM (Prognostics and Health Management) and E-maintenance disciplines. In this scenario, any CBM solution involves the management of numerous technical aspects, that the maintenance manager needs to understand, in order to be implemented properly and effectively, according to the company’s strategy. This paper provides a comprehensive representation of the key components of a generic CBM solution, this is presented using a framework or supporting structure for an effective management of the CBM programs. The concept “symptom of failure”, its corresponding analysis techniques (introduced by ISO 13379-1 and linked with RCM/FMEA analysis), and other international standard for CBM open-software application development (for instance, ISO 13374 and OSA-CBM), are used in the paper for the development of the framework. An original template has been developed, adopting the formal structure of RCM analysis templates, to integrate the information of the PHM techniques used to capture the failure mode behaviour and to manage maintenance. Finally, a case study describes the framework using the referred template.Gobierno de Andalucía P11-TEP-7303 M

    Testing microelectronic biofluidic systems

    Get PDF
    According to the 2005 International Technology Roadmap for Semiconductors, the integration of emerging nondigital CMOS technologies will require radically different test methods, posing a major challenge for designers and test engineers. One such technology is microelectronic fluidic (MEF) arrays, which have rapidly gained importance in many biological, pharmaceutical, and industrial applications. The advantages of these systems, such as operation speed, use of very small amounts of liquid, on-board droplet detection, signal conditioning, and vast digital signal processing, make them very promising. However, testable design of these devices in a mass-production environment is still in its infancy, hampering their low-cost introduction to the market. This article describes analog and digital MEF design and testing method
    corecore