3,368 research outputs found

    A programmable BIST architecture for clusters of Multiple-Port SRAMs

    Get PDF
    This paper presents a BIST architecture, based on a single microprogrammable BIST processor and a set of memory wrappers, designed to simplify the test of a system containing many distributed multi-port SRAMs of different sizes (number of bits, number of words), access protocol (asynchronous, synchronous), and timin

    Diagnosis of Multiple Scan-Chain Faults in the Presence of System Logic Defects

    Get PDF
    We present a combined hardware-software based approach to scan-chain diagnosis, when the outcome of a test may be affected by system faults occurring in the logic outside of the scan chain. For the hardware component we adopt the double-tree scan (DTS) chain architecture, which has previously been shown to be effective in reducing power, volume, and application time of tests for stuck-at and delay faults. We develop a version of flush test which can resolve a multiple fault in a DTS chain to a small number of suspect candidates. Further resolution to a unique multiple fault is enabled by the software component comprising of fault simulation and analysis of the response of the circuit to test patterns produced by ATPG. Experimental results on benchmark circuits show that near-perfect scan-chain diagnosis for multiple faults is possible even when a large number of random system faults are injected in the circuit

    The integration of on-line monitoring and reconfiguration functions using IEEE1149.4 into a safety critical automotive electronic control unit.

    Get PDF
    This paper presents an innovative application of IEEE 1149.4 and the integrated diagnostic reconfiguration (IDR) as tools for the implementation of an embedded test solution for an automotive electronic control unit, implemented as a fully integrated mixed signal system. The paper describes how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes

    Scan Test Coverage Improvement Via Automatic Test Pattern Generation (Atpg) Tool Configuration

    Get PDF
    The scan test coverage improvement by using automatic test pattern generation (ATPG) tool configuration was investigated. Improving the test coverage is essential in detecting manufacturing defects in semiconductor industry so that high quality products can be supplied to consumers. The ATPG tool used was Mentor Graphics Tessent TestKompress (version 2014.1). The study was done by setting up a few experiments of utilizing and modifying ATPG commands and switches, observing the test coverage improvement from the statistical reports provided during pattern generation process and providing relatable discussions. By modifying the ATPG commands, it can be expected to have some improvement in the test coverage. The scan test patterns generated were stuck-at test patterns. Based on the experiments done, comparison was made on the different coverage readings and the most optimized method and flow of ATPG were determined. The most optimized flow gave an improvement of 0.91% in test coverage which is acceptable since this method does not involve a change in design. The test patterns generated were converted and tested using automatic test equipment (ATE) to observe its performance on real silicon. The test coverage improvement using ATPG tool instead of the design-based method is important as a faster workaround for back-end engineers to provide high quality test contents in such a short product development duration

    A Novel Sequence Generation Approach to Diagnose Faults in Reconfigurable Scan Networks

    Get PDF
    With the complexity of nanoelectronic devices rapidly increasing, an efficient way to handle large number of embedded instruments became a necessity. The IEEE 1687 standard was introduced to provide flexibility in accessing and controlling such instrumentation through a reconfigurable scan chain. Nowadays, together with testing the system for defects that may affect the scan chains themselves, the diagnosis of such faults is also important. This article proposes a method for generating stimuli to precisely identify permanent high-level faults in a IEEE 1687 reconfigurable scan chain: the system is modeled as a finite state automaton where faults correspond to multiple incorrect transitions; then, a dynamic greedy algorithm is used to select a sequence of inputs able to distinguish between all possible faults. Experimental results on the widely-adopted ITC'02 and ITC'16 benchmark suites, as well as on synthetically generated circuits, clearly demonstrate the applicability and effectiveness of the proposed approach: generated sequences are two orders of magnitude shorter compared to previous methodologies, while the computational resources required remain acceptable even for larger benchmarks

    Implementation of Static and Semi-Static Versions of a 24+8x8 Quad-rail NULL Convention Multiply and Accumulate Unit

    Get PDF
    This paper focuses on implementing a 2s complement 8x8 dual-rail bit-wise pipelined multiplier using the asynchronous null convention logic (NCL) paradigm. The design utilizes a Wallace tree for partial product summation, and is implemented and simulated in VHDL, the transistor level, and the physical level, using a 1.8V 0.18mum TSMC CMOS process. The multiplier is realized using both static and semi-static versions of the NCL gates; and these two implementations are compared in terms of area, power, and speed

    A Framework for the Detection of Crosstalk Noise in FPGAs

    Get PDF
    In recent years, crosstalk noise has emerged a serious problem because more and more devices and wires have been packed on electronic chips. As integrated circuits are migrated to more advanced technologies, it has become clear that crosstalk noise is the important phenomenon that must be taken into account. Despite of being more immune to crosstalk noise than their ASIC (application specific integrated circuit) counterparts, the dense interconnected structures of FPGAs (field programmable gate arrays) invite more vulnerabilities with crosstalk noise. Due to the lack of electrical detail concerning FPGA devices it is quite difficult to test the faults affected by crosstalk noise. This paper proposes a new approach for detecting the effects such as glitches and delays in transition that are due to crosstalk noise in FPGAs. This approach is similar to the BIST (built-in self test) technique in that it incorporates the test pattern generator to generate the test vectors and the analyzer to analyze the crosstalk faults without any overhead for testing

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important
    • 

    corecore