24 research outputs found

    Applications of Power Electronics:Volume 1

    Get PDF

    Autonomous Vehicle and Smart Traffic

    Get PDF
    Long-term forecasting of technology has become extremely difficult due to the rapid realization of any suggested idea. Communication and software technologies can compensate for the problems that may arise during the transition period between idea generation and realization. However, this rapid process can cause problems for the automotive industry and transportation systems.Autonomous vehicles are currently a hot topic within the transportation sector. This development is related to the compatibility of vehicles of the near future with the development of the infrastructure on which these vehicles will be based. There are certain problems regarding the solutions that are currently being worked on, such as how autonomous should vehicles be, their control mechanisms, driving safety, energy requirements, and environmental use. The problem is not just about the design of autonomous vehicles. The user transportation systems of these vehicles also need problem-free solutions. The problem should not only be seen as financial because sociological effects are an important part of this feature.In this book, valuable research on the modeling, systems, transportation, technological necessity, and logistics of autonomous vehicles is presented. The content of the book will help researchers to create ideas for their future studies and to open up the discussion of autonomous vehicles

    The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions

    Full text link
    [EN] This paper introduces a new approach for improving the fault diagnosis in induction motors under time-varying conditions. A significant amount of published approaches in this field rely on representing the stator current in the time-frequency domain, and identifying the characteristic signatures that each type of fault generates in this domain. However, time-frequency transforms produce three-dimensional (3-D) representations, very costly in terms of storage and processing resources. Moreover, the identification and evaluation of the fault components in the time-frequency plane requires a skilled staff or advanced pattern detection algorithms. The proposed methodology solves these problem by transforming the complex 3-D spectrograms supplied by time-frequency tools into simple x-y graphs, similar to conventional Fourier spectra. These graphs display a unique pattern for each type of fault, even under supply or load time-varying conditions, making easy and reliable the diagnostic decision even for nonskilled staff. Moreover, the resulting patterns can be condensed in a very small dataset, reducing greatly the storage or transmission requirements regarding to conventional spectrograms. The proposed method is an extension to nonstationary conditions of the harmonic order tracking approach. It is introduced theoretically and validated experimentally by using the commercial induction motors feed through electronic converters.This work was supported by the Spanish "Ministerio de Economia y Competitividad" in the framework of the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" (Project reference DPI2014-60881-R). Paper no. TEC-00176-2016.Sapena-Bano, A.; Burriel-Valencia, J.; Pineda-Sanchez, M.; Puche-Panadero, R.; Riera-Guasp, M. (2017). The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions. IEEE Transactions on Energy Conversion. 32(1):244-256. doi:10.1109/TEC.2016.2626008S24425632

    Embedded Electronics In Medical Applications

    Get PDF
    Proceedings of"Conference on Recent Advances in Biomaterials Dec 17-18 '10"Held at Saveetha School of Engineering, Saveetha University, Thandalam, Chennai-602 105, Tamilnadu, IndiaTheme 10Embedded Electronics In Medical Application

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Model Referenced Condition Monitoring of High Performance CNC Machine Tools

    Get PDF
    Generally, machine tool monitoring is the prediction of the system’s health based on signal acquisition and processing and classification in order to identify the causes of the problem. The producers of machine tools need to pay more attention to their products life cycle because their customers increasingly focus on machine tool reliability and costs. The present study is concerned with the development of a condition monitoring system for high speed Computer Numerical Control (CNC) milling machine tools. A model is a simplification of a real machine to visualize the dynamics of a mechatronic system. This thesis applies recent modelling techniques to represent all parameters which affect the accuracy of a component produced automatically. The control can achieve an accuracy approaching the tolerance restrictions imposed by the machine tool axis repeatability and its operating environment. The motion control system of the CNC machine tool is described and the elements, which compose the axis drives including both the electrical components and the mechanical ones, are analysed and modelled. SIMULINK models have been developed to represent the majority of the dynamic behaviour of the feed drives from the actual CNC machine tool. Various values for the position controller and the load torque have been applied to the motor to show their behaviour. Development of a mechatronic hybrid model for five-axis CNC machine tool using Multi-Body-System (MBS) simulation approach is described. Analysis of CNC machine tool performance under non-cutting conditions is developed. ServoTrace data have been used to validate the Multi-body simulation of tool-to-workpiece position. This thesis aspects the application of state of art sensing methods in the field of condition monitoring of electromechanical systems. The ballscrew-with-nut is perhaps the most prevalent CNC machine subsystem and the condition of each element is crucial to the success of a machining operation. It’s essential to know of the health status of ballscrew, bearings and nut. Acoustic emission analysis of machines has been carried out to determine the deterioration of the ballscrew. Standard practices such as use of a Laser Interferometer have been used to determine the position of the machine tool. A novel machine feed drive condition monitoring system using acoustic emission (AE) signals has been proposed. The AE monitoring techniques investigated can be categorised into traditional AE parameters of energy, event duration and peak amplitude. These events are selected and normalised to estimate remaining life of the machine. This method is shown to be successfully applied for the ballscrew subsystem of an industrial high-speed milling machine. Finally, the successful outcome of the project will contribute to machine tool industry making possible manufacturing of more accurate products with lower costs in shorter time

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Proceedings of the 8th International Conference EEMODS'2013 Energy Efficiency in Motor Driven Systems

    Get PDF
    This book contains the papers presented at the eighth international conference on Energy Efficiency in Motor Driven Systems EEMODS 2013 EEMODS 2013 was organised in Rio de Janeiro, Brasil from 28 to 30 October 2013. This major international conference, which was previously been staged in Lisbon (1996), London (1999), Treviso (2002), Heidelberg (2005), Beijing (2007), Nantes (2009) and Washington DC (2011) has been very successful in attracting an international and distinguished audience, representing a wide variety of stakeholders in policy implementation and development, manufacturing and promotion of energy-efficient motor systems, including key policy makers, equipment manufacturers, academia and end-users. Potential readers who may benefit from this book include researchers, engineers, policymakers, energy agencies, electric utilities, and all those who can influence the design, selection, application, and operation of electrical motor driven systems.JRC.F.7-Renewables and Energy Efficienc

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore