2,892 research outputs found

    Diagnosing people with dementia using automatic conversation analysis

    Get PDF
    A recent study using Conversation Analysis (CA) has demonstrated that communication problems may be picked up during conversations between patients and neurologists, and that this can be used to differentiate between patients with (progressive neurodegenerative dementia) ND and those with (nonprogressive) functional memory disorders (FMD). This paper presents a novel automatic method for transcribing such conversations and extracting CA-style features. A range of acoustic, syntactic, semantic and visual features were automatically extracted and used to train a set of classifiers. In a proof-of-principle style study, using data recording during real neurologist-patient consultations, we demonstrate that automatically extracting CA-style features gives a classification accuracy of 95%when using verbatim transcripts. Replacing those transcripts with automatic speech recognition transcripts, we obtain a classification accuracy of 79% which improves to 90% when feature selection is applied. This is a first and encouraging step towards replacing inaccurate, potentially stressful cognitive tests with a test based on monitoring conversation capabilities that could be conducted in e.g. the privacy of the patient’s own home

    An avatar-based system for identifying individuals likely to develop dementia

    Get PDF
    This paper presents work on developing an automatic dementia screening test based on patients’ ability to interact and communicate — a highly cognitively demanding process where early signs of dementia can often be detected. Such a test would help general practitioners, with no specialist knowledge, make better diagnostic decisions as current tests lack specificity and sensitivity. We investigate the feasibility of basing the test on conversations between a ‘talking head’ (avatar) and a patient and we present a system for analysing such conversations for signs of dementia in the patient’s speech and language. Previously we proposed a semi-automatic system that transcribed conversations between patients and neurologists and extracted conversation analysis style features in order to differentiate between patients with progressive neurodegenerative dementia (ND) and functional memory disorders (FMD). Determining who talks when in the conversations was performed manually. In this study, we investigate a fully automatic system including speaker diarisation, and the use of additional acoustic and lexical features. Initial results from a pilot study are presented which shows that the avatar conversations can successfully classify ND/FMD with around 91% accuracy, which is in line with previous results for conversations that were led by a neurologist

    A Method for Analysis of Patient Speech in Dialogue for Dementia Detection

    Get PDF
    We present an approach to automatic detection of Alzheimer's type dementia based on characteristics of spontaneous spoken language dialogue consisting of interviews recorded in natural settings. The proposed method employs additive logistic regression (a machine learning boosting method) on content-free features extracted from dialogical interaction to build a predictive model. The model training data consisted of 21 dialogues between patients with Alzheimer's and interviewers, and 17 dialogues between patients with other health conditions and interviewers. Features analysed included speech rate, turn-taking patterns and other speech parameters. Despite relying solely on content-free features, our method obtains overall accuracy of 86.5\%, a result comparable to those of state-of-the-art methods that employ more complex lexical, syntactic and semantic features. While further investigation is needed, the fact that we were able to obtain promising results using only features that can be easily extracted from spontaneous dialogues suggests the possibility of designing non-invasive and low-cost mental health monitoring tools for use at scale.Comment: 8 pages, Resources and ProcessIng of linguistic, paralinguistic and extra-linguistic Data from people with various forms of cognitive impairment, LREC 201

    Dementia detection using automatic analysis of conversations

    Get PDF
    Neurogenerative disorders, like dementia, can affect a person's speech, language and as a consequence, conversational interaction capabilities. A recent study, aimed at improving dementia detection accuracy, investigated the use of conversation analysis (CA) of interviews between patients and neurologists as a means to differentiate between patients with progressive neurodegenerative memory disorder (ND) and those with (non-progressive) functional memory disorders (FMD). However, doing manual CA is expensive and difficult to scale up for routine clinical use. In this paper, we present an automatic classification system using an intelligent virtual agent (IVA). In particular, using two parallel corpora of respectively neurologist- and IVA-led interactions, we show that using acoustic, lexical and CA-inspired features enable ND/FMD classification rates of 90.0% for the neurologist-patient conversations, and 90.9% for the IVA-patient conversations. Analysis of the differentiating potential of individual features show that some differences exist between the IVA and human-led conversations, for example in average turn length of patients

    Information Technologies for Cognitive Decline

    Get PDF
    Information technology (IT) is used to establish a diagnosis and provide treatment for people with cognitive decline. The condition affects many before it becomes clear that more permanent changes, like dementia, could be noticed. Those who search for information are exposed to lots of information and different technologies which they need to make sense of and eventually use to help themselves. In this research literature and information available on the Internet were systematically analyzed to present methods used for diagnosis and treatment. Methods used for diagnosis are self-testing, sensors, Virtual Reality (VR), and brain imaging. Methods used for treatment are games, websites with information and media, Virtual Reality (VR), sensors, and robots. The resulting concept of knowledge was the basis of an artifact whose main goal was to present the facts to the broad public. This implied that a user-friendly artifact was developed through three iterations using the Design Science framework. A total of nine users and IT usability experts have evaluated the artifact returning the SUS score of 85,83 for users and 87,5 for IT usability experts. Nielsen´s heuristics were assessed by IT usability experts only, returning an average score of 4,28. The general response was positive regarding both the content and the attempt to present methods used in cognitive decline. It reminds to be seen how to bring this knowledge to those who are most affected by the decline.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    A longitudinal observational study of home-based conversations for detecting early dementia:protocol for the CUBOId TV task

    Get PDF
    INTRODUCTION: Limitations in effective dementia therapies mean that early diagnosis and monitoring are critical for disease management, but current clinical tools are impractical and/or unreliable, and disregard short-term symptom variability. Behavioural biomarkers of cognitive decline, such as speech, sleep and activity patterns, can manifest prodromal pathological changes. They can be continuously measured at home with smart sensing technologies, and permit leveraging of interpersonal interactions for optimising diagnostic and prognostic performance. Here we describe the ContinUous behavioural Biomarkers Of cognitive Impairment (CUBOId) study, which explores the feasibility of multimodal data fusion for in-home monitoring of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The report focuses on a subset of CUBOId participants who perform a novel speech task, the ‘TV task’, designed to track changes in ecologically valid conversations with disease progression. METHODS AND ANALYSIS: CUBOId is a longitudinal observational study. Participants have diagnoses of MCI or AD, and controls are their live-in partners with no such diagnosis. Multimodal activity data were passively acquired from wearables and in-home fixed sensors over timespans of 8–25 months. At two time points participants completed the TV task over 5 days by recording audio of their conversations as they watched a favourite TV programme, with further testing to be completed after removal of the sensor installations. Behavioural testing is supported by neuropsychological assessment for deriving ground truths on cognitive status. Deep learning will be used to generate fused multimodal activity-speech embeddings for optimisation of diagnostic and predictive performance from speech alone. ETHICS AND DISSEMINATION: CUBOId was approved by an NHS Research Ethics Committee (Wales REC; ref: 18/WA/0158) and is sponsored by University of Bristol. It is supported by the National Institute for Health Research Clinical Research Network West of England. Results will be reported at conferences and in peer-reviewed scientific journals

    Computational Language Assessment in patients with speech, language, and communication impairments

    Full text link
    Speech, language, and communication symptoms enable the early detection, diagnosis, treatment planning, and monitoring of neurocognitive disease progression. Nevertheless, traditional manual neurologic assessment, the speech and language evaluation standard, is time-consuming and resource-intensive for clinicians. We argue that Computational Language Assessment (C.L.A.) is an improvement over conventional manual neurological assessment. Using machine learning, natural language processing, and signal processing, C.L.A. provides a neuro-cognitive evaluation of speech, language, and communication in elderly and high-risk individuals for dementia. ii. facilitates the diagnosis, prognosis, and therapy efficacy in at-risk and language-impaired populations; and iii. allows easier extensibility to assess patients from a wide range of languages. Also, C.L.A. employs Artificial Intelligence models to inform theory on the relationship between language symptoms and their neural bases. It significantly advances our ability to optimize the prevention and treatment of elderly individuals with communication disorders, allowing them to age gracefully with social engagement.Comment: 36 pages, 2 figures, to be submite

    A Review of Automated Speech-Based Interaction for Cognitive Screening

    Get PDF
    Language, speech and conversational behaviours reflect cognitive changes that may precede physiological changes and offer a much more cost-effective option for detecting preclinical cognitive decline. Artificial intelligence and machine learning have been established as a means to facilitate automated speech-based cognitive screening through automated recording and analysis of linguistic, speech and conversational behaviours. In this work, a scoping literature review was performed to document and analyse current automated speech-based implementations for cognitive screening from the perspective of human–computer interaction. At this stage, the goal was to identify and analyse the characteristics that define the interaction between the automated speech-based screening systems and the users, potentially revealing interaction-related patterns and gaps. In total, 65 articles were identified as appropriate for inclusion, from which 15 articles satisfied the inclusion criteria. The literature review led to the documentation and further analysis of five interaction-related themes: (i) user interface, (ii) modalities, (iii) speech-based communication, (iv) screening content and (v) screener. Cognitive screening through speech-based interaction might benefit from two practices: (1) implementing more multimodal user interfaces that facilitate—amongst others—speech-based screening and (2) introducing the element of motivation in the speech-based screening process.publishedVersio

    Detecting early signs of dementia in conversation

    Get PDF
    Dementia can affect a person's speech, language and conversational interaction capabilities. The early diagnosis of dementia is of great clinical importance. Recent studies using the qualitative methodology of Conversation Analysis (CA) demonstrated that communication problems may be picked up during conversations between patients and neurologists and that this can be used to differentiate between patients with Neuro-degenerative Disorders (ND) and those with non-progressive Functional Memory Disorder (FMD). However, conducting manual CA is expensive and difficult to scale up for routine clinical use.\ud This study introduces an automatic approach for processing such conversations which can help in identifying the early signs of dementia and distinguishing them from the other clinical categories (FMD, Mild Cognitive Impairment (MCI), and Healthy Control (HC)). The dementia detection system starts with a speaker diarisation module to segment an input audio file (determining who talks when). Then the segmented files are passed to an automatic speech recogniser (ASR) to transcribe the utterances of each speaker. Next, the feature extraction unit extracts a number of features (CA-inspired, acoustic, lexical and word vector) from the transcripts and audio files. Finally, a classifier is trained by the features to determine the clinical category of the input conversation. Moreover, we investigate replacing the role of a neurologist in the conversation with an Intelligent Virtual Agent (IVA) (asking similar questions). We show that despite differences between the IVA-led and the neurologist-led conversations, the results achieved by the IVA are as good as those gained by the neurologists. Furthermore, the IVA can be used for administering more standard cognitive tests, like the verbal fluency tests and produce automatic scores, which then can boost the performance of the classifier. The final blind evaluation of the system shows that the classifier can identify early signs of dementia with an acceptable level of accuracy and robustness (considering both sensitivity and specificity)
    • …
    corecore