1,024 research outputs found

    A kernel density estimate-based approach to component goodness modeling

    Get PDF
    Intermittent fault localization approaches account for the fact that faulty components may fail intermittently by considering a parameter (known as goodness) that quantifies the probability that faulty components may still exhibit correct behavior. Current, state-of-the-art approaches (1) assume that this goodness probability is context independent and (2) do not provide means for integrating past diagnosis experience in the diagnostic mechanism. In this paper, we present a novel approach, coined Non-linear Feedback-based Goodness Estimate (NFGE), that uses kernel density estimations (KDE) to address such limitations. We evaluated the approach with both synthetic and real data, yielding lower estimation errors, thus increasing the diagnosis performance

    Diagnosing intermittent and persistent faults using static Bayesian networks

    Get PDF
    ABSTRACT Both intermittent and persistent faults may occur in a wide range of systems. We present in this paper the introduction of intermittent fault handling techniques into ProDiagnose, an algorithm that previously only handled persistent faults. We discuss novel algorithmic techniques as well as how our static Bayesian networks help diagnose, in an integrated manner, a range of intermittent and persistent faults. Through experiments with data from the ADAPT electrical power system test bed, generated as part of the Second International Diagnostic Competition (DXC-10), we show that this novel variant of ProDiagnose diagnoses intermittent faults accurately and quickly, while maintaining strong performance on persistent faults

    Distributed Intermittent Fault Diagnosis in Wireless Sensor Network Using Likelihood Ratio Test

    Get PDF
    In current days, sensor nodes are deployed in hostile environments for various military and commercial applications. Sensor nodes are becoming faulty and having adverse effects in the network if they are not diagnosed and inform the fault status to other nodes. Fault diagnosis is difficult when the nodes behave faulty some times and provide good data at other times. The intermittent disturbances may be random or kind of spikes either in regular or irregular intervals. In literature, the fault diagnosis algorithms are based on statistical methods using repeated testing or machine learning. To avoid more complex and time consuming repeated test processes and computationally complex machine learning methods, we proposed a one shot likelihood ratio test (LRT) here to determine the fault status of the sensor node. The proposed method measures the statistics of the received data over a certain period of time and then compares the likelihood ratio with the threshold value associated with a certain tolerance limit. The simulation results using a real time data set shows that the new method provides better detection accuracy (DA) with minimum false positive rate (FPR) and false alarm rate (FAR) over the modified three sigma test. LRT based hybrid fault diagnosis method detecting the fault status of a sensor node in wireless sensor network (WSN) for real time measured data with 100% DA, 0% FAR and 0% FPR if the probability of the data from faulty node exceeds 25%

    Environmental stress level evaluation approach based on physical model and interval grey association degree

    Get PDF
    AbstractAssociating environmental stresses (ESs) with built-in test (BIT) output is an important means to help diagnose intermittent faults (IFs). Aiming at low efficiency in association of traditional time stress measurement device (TSMD), an association model is built. Thereafter, a novel approach is given to evaluate the integrated environmental stress (IES) level. Firstly, the selection principle and approach of main environmental stresses (MESs) and key characteristic parameters (KCPs) are presented based on fault mode, mechanism, and ESs analysis (FMMEA). Secondly, reference stress events (RSEs) are constructed by dividing IES into three stress levels according to its impact on faults; and then the association model between integrated environmental stress event (IESE) and BIT output is built. Thirdly, an interval grey association approach to evaluate IES level is proposed due to the interval number of IES value. Consequently, the association output can be obtained as well. Finally, a case study is presented to demonstrate the proposed approach. Results show the proposed model and approach are effective and feasible. This approach can be used to guide ESs measure, record, and association. It is well suited for on-line assistant diagnosis of faults, especially IFs

    Flight deck engine advisor

    Get PDF
    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations

    Model-Based Software Debugging

    Get PDF
    The complexity and size of software systems have rapidly increased in recent years, with software engineers facing ever-growing challenges in building and maintaining such systems. In particular, testing and debugging, that is, finding, isolating, and eliminating defects in software systems still constitute a major challenge in practiceMinisterio de Ciencia y Tecnología TIN2015-63502-C3-2-RFundacao para a Ciencia e a Tecnologia (FCT) UID/EEA/50014/2013European Regional Development Fund (ERDF) POCI-01-0145-FEDER-006961 (COMPETE 2020

    A data analytic approach to automatic fault diagnosis and prognosis for distribution automation

    Get PDF
    Distribution Automation (DA) is deployed to reduce outages and to rapidly reconnect customers following network faults. Recent developments in DA equipment have enabled the logging of load and fault event data, referred to as ‘pick-up activity’. This pick-up activity provides a picture of the underlying circuit activity occurring between successive DA operations over a period of time and has the potential to be accessed remotely for off-line or on-line analysis. The application of data analytics and automated analysis of this data supports reactive fault management and post fault investigation into anomalous network behavior. It also supports predictive capabilities that identify when potential network faults are evolving and offers the opportunity to take action in advance in order to mitigate any outages. This paper details the design of a novel decision support system to achieve fault diagnosis and prognosis for DA schemes. It combines detailed data from a specific DA device with rule-based, data mining and clustering techniques to deliver the diagnostic and prognostic functions. These are applied to 11kV distribution network data captured from Pole Mounted Auto-Reclosers (PMARs) as provided by a leading UK network operator. This novel automated analysis system diagnoses the nature of a circuit’s previous fault activity, identifies underlying anomalous circuit activity, and highlights indications of problematic events gradually evolving into a full scale circuit fault. The novel contributions include the tackling of ‘semi-permanent faults’ and the re-usable methodology and approach for applying data analytics to any DA device data sets in order to provide diagnostic decisions and mitigate potential fault scenarios

    Enhancing reasoning approaches to diagnose functional and non-functional errors

    Get PDF
    Most approaches to automatic software diagnosis abstract the system under analysis in terms of component activity and correct/incorrect behaviour (colectivelly known as spectra). While this binary error abstraction has been shown to be capable of diagnosing functional errors, when diagnosing non-functional errors it yields suboptimal accuracy. The main reason for this limitation is related to the lack of mechanisms for encoding error symptoms (such as performance degradation) in such a binary schema. In this paper, we propose a novel approach to diagnose both functional and non-functional errors by incorporating into the classic, bayesian reasoning approaches to error diagnosis concepts from the fuzzy logic domain. The empirical evaluation on 27000 synthetic scenarios demonstrates that the proposed fuzzy logic-based approach considerably improves the diagnostic accuracy (20% on average, with 99% statistical significance) when compared to the classic, state-of-the-art approach

    Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

    Get PDF
    Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions

    Cooperative fault detection and isolation in a surveillance sensor network: a case study

    Get PDF
    International audienceThis work focuses on Fault Detection and Isolation (FDI) among sensors of a surveillance network. A review of the main characteristics of faults in sensor networks and the associated diagnosis techniques is first proposed. An extensive study has then been performed on the case study of the persistent monitoring of an area by a sensor network which provides binary measurements of the occurrence of events to be detected (intrusions). The performance of a reference FDI method with and without simultaneous intrusions has been quantified through Monte Carlo simulations. The combination of static and mobile sensors has also been considered and shows a significant performance improvement for the detection of faults and intrusions in this context
    corecore