1,734 research outputs found

    Recent Applications of Deep Learning Algorithms in Medical Image Analysis

    Get PDF
    Advances in deep learning have enabled researchers in the field of medical imaging to employ such techniques for various applications, including early diagnosis of different diseases. Deep learning techniques such as convolutional neural networks offer the capability of extracting invariant features from images that can improve the performance of most predictive models in medical and diagnostic imaging. This work concentrates on reviewing deep learning architectures along with medical imaging modalities where the crucial applications of such algorithms, including image classification and segmentation, are discussed. Also, brain imaging as a branch of medical imaging which allows scientists to explore the structure and function of the brain is explored, and the applications of deep learning to early diagnose Alzheimerโ€™s Disease, and Autism as the most critical brain disorders are studied. Moreover, the recent research findings revealed that employing deep learning-based semantic segmentation techniques could significantly improve the accuracy of models developed for brain tumor detection. Such advances in early diagnosis of disorders and tumors encourage medical imaging practitioners to implement software applications assisting them to improve their decision-making process

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Understanding Hidden Memories of Recurrent Neural Networks

    Full text link
    Recurrent neural networks (RNNs) have been successfully applied to various natural language processing (NLP) tasks and achieved better results than conventional methods. However, the lack of understanding of the mechanisms behind their effectiveness limits further improvements on their architectures. In this paper, we present a visual analytics method for understanding and comparing RNN models for NLP tasks. We propose a technique to explain the function of individual hidden state units based on their expected response to input texts. We then co-cluster hidden state units and words based on the expected response and visualize co-clustering results as memory chips and word clouds to provide more structured knowledge on RNNs' hidden states. We also propose a glyph-based sequence visualization based on aggregate information to analyze the behavior of an RNN's hidden state at the sentence-level. The usability and effectiveness of our method are demonstrated through case studies and reviews from domain experts.Comment: Published at IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2017

    ๋ถˆ์ถฉ๋ถ„ํ•œ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํšŒ์ „ ๊ธฐ๊ณ„ ์ง„๋‹จ๊ธฐ์ˆ  ํ•™์Šต๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์œค๋ณ‘๋™.Deep Learning is a promising approach for fault diagnosis in mechanical applications. Deep learning techniques are capable of processing lots of data in once, and modelling them into desired diagnostic model. In industrial fields, however, we can acquire tons of data but barely useful including fault or failure data because failure in industrial fields is usually unacceptable. To cope with this insufficient fault data problem to train diagnostic model for rotating machinery, this thesis proposes three research thrusts: 1) filter-envelope blocks in convolution neural networks (CNNs) to incorporate the preprocessing steps for vibration signal; frequency filtering and envelope extraction for more optimal solution and reduced efforts in building diagnostic model, 2) cepstrum editing based data augmentation (CEDA) for diagnostic dataset consist of vibration signals from rotating machinery, and 3) selective parameter freezing (SPF) for efficient parameter transfer in transfer learning. The first research thrust proposes noble types of functional blocks for neural networks in order to learn robust feature to the vibration data. Conventional neural networks including convolution neural network (CNN), is tend to learn biased features when the training data is acquired from small cases of conditions. This can leads to unfavorable performance to the different conditions or other similar equipment. Therefore this research propose two neural network blocks which can be incorporated to the conventional neural networks and minimize the preprocessing steps, filter block and envelope block. Each block is designed to learn frequency filter and envelope extraction function respectively, in order to induce the neural network to learn more robust and generalized features from limited vibration samples. The second thrust presents a new data augmentation technique specialized for diagnostic data of vibration signals. Many data augmentation techniques exist for image data with no consideration for properties of vibration data. Conventional techniques for data augmentation, such as flipping, rotating, or shearing are not proper for 1-d vibration data can harm the natural property of vibration signal. To augment vibration data without losing the properties of its physics, the proposed method generate new samples by editing the cepstrum which can be done by adjusting the cepstrum component of interest. By doing reverse transform to the edited cepstrum, the new samples is obtained and this results augmented dataset which leads to higher accuracy for the diagnostic model. The third research thrust suggests a new parameter repurposing method for parameter transfer, which is used for transfer learning. The proposed SPF selectively freezes transferred parameters from source network and re-train only unnecessary parameters for target domain to reduce overfitting and preserve useful source features when the target data is limited to train diagnostic model.๋”ฅ๋Ÿฌ๋‹์€ ๊ธฐ๊ณ„ ์‘์šฉ ๋ถ„์•ผ์˜ ๊ฒฐํ•จ ์ง„๋‹จ์„ ์œ„ํ•œ ์œ ๋งํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์€ ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ง„๋‹จ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ๋Š” ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์„ ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์–ป์„ ์ˆ˜ ์žˆ๋”๋ผ๋„ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํš๋“ํ•˜๊ธฐ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•์˜ ์‚ฌ์šฉ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ํšŒ์ „ ๊ธฐ๊ณ„์˜ ์ง„๋‹จ์„ ์œ„ํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹์„ ํ•™์Šต์‹œํ‚ฌ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ ์žฅ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์€ 3 ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. 1) ํ–ฅ์ƒ๋œ ์ง„๋™ ํŠน์ง• ํ•™์Šต์„ ์œ„ํ•œ ํ•„ํ„ฐ-์—”๋ฒจ๋กญ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ 2) ์ง„๋™๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ Cepstrum ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•3) ์ „์ด ํ•™์Šต์—์„œ ํšจ์œจ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฐ•๊ฑดํ•œ ํŠน์ง•์„ ๋ฐฐ์šฐ๊ธฐ ์œ„ํ•ด ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋„คํŠธ์›Œํฌ ๋ธ”๋ก๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํฌํ•จํ•˜๋Š” ์ข…๋ž˜์˜ ์‹ ๊ฒฝ๋ง์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ์— ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํŽธํ–ฅ๋œ ํŠน์ง•์„ ๋ฐฐ์šฐ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋‹ค๋ฅธ ์กฐ๊ฑด์—์„œ ์ž‘๋™ํ•˜๋Š” ๊ฒฝ์šฐ๋‚˜ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ์ ์šฉ๋˜์—ˆ์„ ๋•Œ ๋‚ฎ์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์— ํ•จ๊ป˜ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ ๋ธ”๋ก ๋ฐ ์—”๋ฒจ๋กญ ๋ธ”๋ก์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ ๋ธ”๋ก์€ ์ฃผํŒŒ์ˆ˜ ํ•„ํ„ฐ์™€ ์—”๋ฒจ๋กญ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์Šค์Šค๋กœ ํ•™์Šตํ•˜์—ฌ ์‹ ๊ฒฝ๋ง์ด ์ œํ•œ๋œ ํ•™์Šต ์ง„๋™๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ณด๋‹ค ๊ฐ•๊ฑดํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ๋œ ํŠน์ง•์„ ํ•™์Šตํ•˜๋„๋ก ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ์‹ ํ˜ธ์˜ ์ง„๋‹จ ๋ฐ์ดํ„ฐ์— ํŠนํ™”๋œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋’ค์ง‘๊ธฐ, ํšŒ์ „ ๋˜๋Š” ์ „๋‹จ๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•œ ๊ธฐ์กด์˜ ๊ธฐ์ˆ ์ด 1 ์ฐจ์› ์ง„๋™ ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ง„๋™ ์‹ ํ˜ธ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์— ๋งž์ง€ ์•Š๋Š” ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ์žƒ์ง€ ์•Š๊ณ  ์ง„๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ๋Ÿ‰ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ cepstrum์˜ ์ฃผ์š”์„ฑ๋ถ„์„ ์ถ”์ถœํ•˜๊ณ  ์กฐ์ •ํ•˜์—ฌ ์—ญ cepstrum์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ฆ๋Ÿ‰๋ค ๋ฐ์ดํ„ฐ์„ธํŠธ๋Š” ์ง„๋‹จ ๋ชจ๋ธ ํ•™์Šต์— ๋Œ€ํ•ด ์„ฑ๋Šฅํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜จ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ ์žฌํ•™์Šต๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•์€ ์†Œ์Šค ๋„คํŠธ์›Œํฌ์—์„œ ์ „์ด๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋™๊ฒฐํ•˜๊ณ  ๋Œ€์ƒ ๋„๋ฉ”์ธ์— ๋Œ€ํ•ด ๋ถˆํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ์žฌํ•™์Šตํ•˜์—ฌ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ง„๋‹จ ๋ชจ๋ธ์— ์žฌํ•™์Šต๋  ๋•Œ์˜ ๊ณผ์ ํ•ฉ์„ ์ค„์ด๊ณ  ์†Œ์Šค ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ณด์กดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ธ ๋ฐฉ๋ฒ•์€ ๋…๋ฆฝ์ ์œผ๋กœ ๋˜๋Š” ๋™์‹œ์— ์ง„๋‹จ๋ชจ๋ธ์— ์‚ฌ์šฉ๋˜์–ด ๋ถ€์กฑํ•œ ๊ณ ์žฅ๋ฐ์ดํ„ฐ๋กœ ์ธํ•œ ์ง„๋‹จ์„ฑ๋Šฅ์˜ ๊ฐ์†Œ๋ฅผ ๊ฒฝ๊ฐํ•˜๊ฑฐ๋‚˜ ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ์ด๋Œ์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค.Chapter 1 Introduction 13 1.1 Motivation 13 1.2 Research Scope and Overview 15 1.3 Structure of the Thesis 19 Chapter 2 Literature Review 20 2.1 Deep Neural Networks 20 2.2 Transfer Learning and Parameter Transfer 23 Chapter 3 Description of Testbed Data 26 3.1 Bearing Data I: Case Western Reserve University Data 26 3.2 Bearing Data II: Accelerated Life Test Test-bed 27 Chapter 4 Filter-Envelope Blocks in Neural Network for Robust Feature Learning 32 4.1 Preliminary Study of Problems In Use of CNN for Vibration Signals 34 4.1.1 Class Confusion Problem of CNN Model to Different Conditions 34 4.1.2 Benefits of Frequency Filtering and Envelope Extraction for Fault Diagnosis in Vibration Signals 37 4.2 Proposed Network Block 1: Filter Block 41 4.2.1 Spectral Feature Learning in Neural Network 42 4.2.2 FIR Band-pass Filter in Neural Network 45 4.2.3 Result and Discussion 48 4.3 Proposed Neural Block 2: Envelope Block 48 4.3.1 Max-Average Pooling Block for Envelope Extraction 51 4.3.2 Adaptive Average Pooling for Learnable Envelope Extractor 52 4.3.3 Result and Discussion 54 4.4 Filter-Envelope Network for Fault Diagnosis 56 4.4.1 Combinations of Filter-Envelope Blocks for the use of Rolling Element Bearing Fault Diagnosis 56 4.4.2 Summary and Discussion 58 Chapter 5 Cepstrum Editing Based Data Augmentation for Vibration Signals 59 5.1 Brief Review of Data Augmentation for Deep Learning 59 5.1.1 Image Augmentation to Enlarge Training Dataset 59 5.1.2 Data Augmentation for Vibration Signal 61 5.2 Cepstrum Editing based Data Augmentation 62 5.2.1 Cepstrum Editing as a Signal Preprocessing 62 5.2.2 Cepstrum Editing based Data Augmentation 64 5.3 Results and Discussion 65 5.3.1 Performance validation to rolling element bearing diagnosis 65 Chapter 6 Selective Parameter Freezing for Parameter Transfer with Small Dataset 71 6.1 Overall Procedure of Selective Parameter Freezing 72 6.2 Determination Sensitivity of Source Network Parameters 75 6.3 Case Study 1: Transfer to Different Fault Size 76 6.3.1 Performance by hyperparameter ฮฑ 77 6.3.2 Effect of the number of training samples and network size 79 6.4 Case Study 2: Transfer from Artificial to Natural Fault 81 6.4.1 Diagnostic performance for proposed method 82 6.4.2 Visualization of frozen parameters by hyperparameter ฮฑ 83 6.4.3 Visual inspection of feature space 85 6.5 Conclusion 87 Chapter 7 91 7.1 Contributions and Significance 91Docto
    • โ€ฆ
    corecore