487 research outputs found

    How Different are Pre-trained Transformers for Text Ranking?

    Get PDF
    In recent years, large pre-trained transformers have led to substantial gains in performance over traditional retrieval models and feedback approaches. However, these results are primarily based on the MS Marco/TREC Deep Learning Track setup, with its very particular setup, and our understanding of why and how these models work better is fragmented at best. We analyze effective BERT-based cross-encoders versus traditional BM25 ranking for the passage retrieval task where the largest gains have been observed, and investigate two main questions. On the one hand, what is similar? To what extent does the neural ranker already encompass the capacity of traditional rankers? Is the gain in performance due to a better ranking of the same documents (prioritizing precision)? On the other hand, what is different? Can it retrieve effectively documents missed by traditional systems (prioritizing recall)? We discover substantial differences in the notion of relevance identifying strengths and weaknesses of BERT that may inspire research for future improvement. Our results contribute to our understanding of (black-box) neural rankers relative to (well-understood) traditional rankers, help understand the particular experimental setting of MS-Marco-based test collections.Comment: ECIR 202

    How Well Do Text Embedding Models Understand Syntax?

    Full text link
    Text embedding models have significantly contributed to advancements in natural language processing by adeptly capturing semantic properties of textual data. However, the ability of these models to generalize across a wide range of syntactic contexts remains under-explored. In this paper, we first develop an evaluation set, named \textbf{SR}, to scrutinize the capability for syntax understanding of text embedding models from two crucial syntactic aspects: Structural heuristics, and Relational understanding among concepts, as revealed by the performance gaps in previous studies. Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges, and such ineffectiveness becomes even more apparent when evaluated against existing benchmark datasets. Furthermore, we conduct rigorous analysis to unearth factors that lead to such limitations and examine why previous evaluations fail to detect such ineffectiveness. Lastly, we propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios. This study serves to highlight the hurdles associated with syntactic generalization and provides pragmatic guidance for boosting model performance across varied syntactic contexts.Comment: Accepted to EMNLP-Findings 2023, datasets and code are release

    ABNIRML: Analyzing the Behavior of Neural IR Models

    Get PDF
    Numerous studies have demonstrated the effectiveness of pretrained contextualized language models such as BERT and T5 for ad-hoc search. However, it is not well-understood why these methods are so effective, what makes some variants more effective than others, and what pitfalls they may have. We present a new comprehensive framework for Analyzing the Behavior of Neural IR ModeLs (ABNIRML), which includes new types of diagnostic tests that allow us to probe several characteristics---such as sensitivity to word order---that are not addressed by previous techniques. To demonstrate the value of the framework, we conduct an extensive empirical study that yields insights into the factors that contribute to the neural model's gains, and identify potential unintended biases the models exhibit. We find evidence that recent neural ranking models have fundamentally different characteristics from prior ranking models. For instance, these models can be highly influenced by altered document word order, sentence order and inflectional endings. They can also exhibit unexpected behaviors when additional content is added to documents, or when documents are expressed with different levels of fluency or formality. We find that these differences can depend on the architecture and not just the underlying language model

    Towards Debiasing Fact Verification Models

    Full text link
    Fact verification requires validating a claim in the context of evidence. We show, however, that in the popular FEVER dataset this might not necessarily be the case. Claim-only classifiers perform competitively with top evidence-aware models. In this paper, we investigate the cause of this phenomenon, identifying strong cues for predicting labels solely based on the claim, without considering any evidence. We create an evaluation set that avoids those idiosyncrasies. The performance of FEVER-trained models significantly drops when evaluated on this test set. Therefore, we introduce a regularization method which alleviates the effect of bias in the training data, obtaining improvements on the newly created test set. This work is a step towards a more sound evaluation of reasoning capabilities in fact verification models.Comment: EMNLP IJCNLP 201

    Explainable Information Retrieval: A Survey

    Full text link
    Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy information retrieval systems. Given the increasing use of complex machine learning models in search systems, explainability is essential in building and auditing responsible information retrieval models. This survey fills a vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and discusses recent explainability methods developed for different application domains in information retrieval, providing a common framework and unifying perspectives. In addition, it reflects on the common concern of evaluating explanations and highlights open challenges and opportunities.Comment: 35 pages, 10 figures. Under revie
    corecore