3,766 research outputs found

    Content Recommendation by Analyzing User Behavior in Online Health Communities

    Get PDF
    Online health communities (OHCs) are the platforms for patients and their care-givers to search and share health-related information, and have attracted a vast amount of users in recent years. However, health consumers are easily overwhelmed by the overloaded information in OHCs, which makes it inefficient for users to find contents of their interest. This study proposes a framework for content recommendation by analyzing user activities in OHCs that utilizes social network analysis and text mining technology. We model users’ activities by constructing user behavior networks that capture implicit interactions of users, based on which closely related users are detected and user similarities are calculated. Text analysis are performed using topic model to select the threads for final content recommendation. Based on the data collected from a famous Chinese OHCs, we expect that our model could achieve promising results

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Let's have a chat! A Conversation with ChatGPT: Technology, Applications, and Limitations

    Full text link
    The emergence of an AI-powered chatbot that can generate human-like sentences and write coherent essays has caught the world's attention. This paper discusses the historical overview of chatbots and the technology behind Chat Generative Pre-trained Transformer, better known as ChatGPT. Moreover, potential applications of ChatGPT in various domains, including healthcare, education, and research, are highlighted. Despite promising results, there are several privacy and ethical concerns surrounding ChatGPT. In addition, we highlight some of the important limitations of the current version of ChatGPT. We also ask ChatGPT to provide its point of view and present its responses to several questions we attempt to answer.Comment: This manuscript has been accepted by Artificial Intelligence and Applications (AIA, ISSN: 2811-0854), 202

    A framework to extract biomedical knowledge from gluten-related tweets: the case of dietary concerns in digital era

    Get PDF
    Journal pre proofBig data importance and potential are becoming more and more relevant nowadays, enhanced by the explosive growth of information volume that is being generated on the Internet in the last years. In this sense, many experts agree that social media networks are one of the internet areas with higher growth in recent years and one of the fields that are expected to have a more significant increment in the coming years. Similarly, social media sites are quickly becoming one of the most popular platforms to discuss health issues and exchange social support with others. In this context, this work presents a new methodology to process, classify, visualise and analyse the big data knowledge produced by the sociome on social media platforms. This work proposes a methodology that combines natural language processing techniques, ontology-based named entity recognition methods, machine learning algorithms and graph mining techniques to: (i) reduce the irrelevant messages by identifying and focusing the analysis only on individuals and patient experiences from the public discussion; (ii) reduce the lexical noise produced by the different ways in how users express themselves through the use of domain ontologies; (iii) infer the demographic data of the individuals through the combined analysis of textual, geographical and visual profile information; (iv) perform a community detection and evaluate the health topic study combining the semantic processing of the public discourse with knowledge graph representation techniques; and (v) gain information about the shared resources combining the social media statistics with the semantical analysis of the web contents. The practical relevance of the proposed methodology has been proven in the study of 1.1 million unique messages from more than 400,000 distinct users related to one of the most popular dietary fads that evolve into a multibillion-dollar industry, i.e., gluten-free food. Besides, this work analysed one of the least research fields studied on Twitter concerning public health (i.e., the allergies or immunology diseases as celiac disease), discovering a wide range of health-related conclusions.SING group thanks CITI (Centro de Investigacion, Transferencia e Innovacion) from the University of Vigo for hosting its IT infrastructure. This work was supported by: the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of [UIDB/50006/2020] and [UIDB/04469/2020] units, and BioTecNorte operation [NORTE010145FEDER000004] funded by the European Regional Development Fund under the scope of Norte2020Programa Operacional Regional do Norte, the Xunta de Galicia (Centro singular de investigacion de Galicia accreditation 2019-2022) and the European Union (European Regional Development Fund - ERDF)- Ref. [ED431G2019/06] , and Conselleria de Educacion, Universidades e Formacion Profesional (Xunta de Galicia) under the scope of the strategic funding of [ED431C2018/55GRC] Competitive Reference Group. The authors also acknowledge the post-doctoral fellowship [ED481B2019032] of Martin PerezPerez, funded by the Xunta de Galicia. Funding for open access charge: Universidade de Vigo/CISUGinfo:eu-repo/semantics/publishedVersio

    A Survey on Automated Food Monitoring and Dietary Management Systems

    Get PDF
    Healthy diet with balanced nutrition is key to the prevention of life-threatening diseases such as obesity, cardiovascular disease, and cancer. Recent advances in smartphone and wearable sensor technologies have led to a proliferation of food monitoring applications based on automated food image processing and eating episode detection, with the goal to conquer drawbacks of the traditional manual food journaling that is time consuming, inaccurate, underreporting, and low adherent. In order to provide users feedback with nutritional information accompanied by insightful dietary advice, various techniques in light of the key computational learning principles have been explored. This survey presents a variety of methodologies and resources on this topic, along with unsolved problems, and closes with a perspective and boarder implications of this field

    ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs

    Full text link
    The integration of Computer-Assisted Diagnosis (CAD) with Large Language Models (LLMs) holds great potential in clinical applications, specifically in the roles of digital family doctors and clinic assistants. However, current works in this field are plagued by limitations, specifically a restricted scope of applicable image domains and the provision of unreliable medical advice This restricts their overall processing capabilities. Furthermore, the mismatch in writing style between LLMs and radiologists undermines their practical usefulness. To tackle these challenges, we introduce ChatCAD+, which is designed to be universal and reliable. It is capable of handling medical images from diverse domains and leveraging up-to-date information from reputable medical websites to provide reliable medical advice. Additionally, it incorporates a template retrieval system that improves report generation performance via exemplar reports, enabling seamless integration into existing clinical workflows. The source code is available at https://github.com/zhaozh10/ChatCAD.Comment: Authors Zihao Zhao, Sheng Wang, Jinchen Gu, Yitao Zhu contributed equally to this work and should be considered co-first author

    Effective and Secure Healthcare Machine Learning System with Explanations Based on High Quality Crowdsourcing Data

    Get PDF
    Affordable cloud computing technologies allow users to efficiently outsource, store, and manage their Personal Health Records (PHRs) and share with their caregivers or physicians. With this exponential growth of the stored large scale clinical data and the growing need for personalized care, researchers are keen on developing data mining methodologies to learn efficient hidden patterns in such data. While studies have shown that those progresses can significantly improve the performance of various healthcare applications for clinical decision making and personalized medicine, the collected medical datasets are highly ambiguous and noisy. Thus, it is essential to develop a better tool for disease progression and survival rate predictions, where dataset needs to be cleaned before it is used for predictions and useful feature selection techniques need to be employed before prediction models can be constructed. In addition, having predictions without explanations prevent medical personnel and patients from adopting such healthcare deep learning models. Thus, any prediction models must come with some explanations. Finally, despite the efficiency of machine learning systems and their outstanding prediction performance, it is still a risk to reuse pre-trained models since most machine learning modules that are contributed and maintained by third parties lack proper checking to ensure that they are robust to various adversarial attacks. We need to design mechanisms for detection such attacks. In this thesis, we focus on addressing all the above issues: (i) Privacy Preserving Disease Treatment & Complication Prediction System (PDTCPS): A privacy-preserving disease treatment, complication prediction scheme (PDTCPS) is proposed, which allows authorized users to conduct searches for disease diagnosis, personalized treatments, and prediction of potential complications. (ii) Incentivizing High Quality Crowdsourcing Data For Disease Prediction: A new incentive model with individual rationality and platform profitability features is developed to encourage different hospitals to share high quality data so that better prediction models can be constructed. We also explore how data cleaning and feature selection techniques affect the performance of the prediction models. (iii) Explainable Deep Learning Based Medical Diagnostic System: A deep learning based medical diagnosis system (DL-MDS) is present which integrates heterogeneous medical data sources to produce better disease diagnosis with explanations for authorized users who submit their personalized health related queries. (iv) Attacks on RNN based Healthcare Learning Systems and Their Detection & Defense Mechanisms: Potential attacks on Recurrent Neural Network (RNN) based ML systems are identified and low-cost detection & defense schemes are designed to prevent such adversarial attacks. Finally, we conduct extensive experiments using both synthetic and real-world datasets to validate the feasibility and practicality of our proposed systems
    • …
    corecore