4 research outputs found

    Hybrid High Performance Computing (HPC) + Cloud for Scientific Computing

    Get PDF
    The HPC+Cloud framework has been built to enable on-premise HPC jobs to use resources from cloud computing nodes. As part of designing the software framework, public cloud providers, namely Amazon AWS, Microsoft Azure and NeCTAR were benchmarked against one another, and Microsoft Azure was determined to be the most suitable cloud component in the proposed HPC+Cloud software framework. Finally, an HPC+Cloud cluster was built using the HPC+Cloud software framework and then was validated by conducting HPC processing benchmarks

    Mobiilse värkvõrgu protsessihaldus

    Get PDF
    Värkvõrk, ehk Asjade Internet (Internet of Things, lüh IoT) edendab lahendusi nagu nn tark linn, kus meid igapäevaselt ümbritsevad objektid on ühendatud infosüsteemidega ja ka üksteisega. Selliseks näiteks võib olla teekatete seisukorra monitoorimissüsteem. Võrku ühendatud sõidukitelt (nt bussidelt) kogutakse videomaterjali, mida seejärel töödeldakse, et tuvastada löökauke või lume kogunemist. Tavaliselt hõlmab selline lahendus keeruka tsentraalse süsteemi ehitamist. Otsuste langetamiseks (nt milliseid sõidukeid parasjagu protsessi kaasata) vajab keskne süsteem pidevat ühendust kõigi IoT seadmetega. Seadmete hulga kasvades võib keskne lahendus aga muutuda pudelikaelaks. Selliste protsesside disaini, haldust, automatiseerimist ja seiret hõlbustavad märkimisväärselt äriprotsesside halduse (Business Process Management, lüh BPM) valdkonna standardid ja tööriistad. Paraku ei ole BPM tehnoloogiad koheselt kasutatavad uute paradigmadega nagu Udu- ja Servaarvutus, mis tuleviku värkvõrgu jaoks vajalikud on. Nende puhul liigub suur osa otsustustest ja arvutustest üksikutest andmekeskustest servavõrgu seadmetele, mis asuvad lõppkasutajatele ja IoT seadmetele lähemal. Videotöötlust võiks teostada mini-andmekeskustes, mis on paigaldatud üle linna, näiteks bussipeatustesse. Arvestades IoT seadmete üha suurenevat hulka, vähendab selline koormuse jaotamine vähendab riski, et tsentraalne andmekeskust ülekoormamist. Doktoritöö uurib, kuidas mobiilsusega seonduvaid IoT protsesse taoliselt ümber korraldada, kohanedes pidevalt muutlikule, liikuvate seadmetega täidetud servavõrgule. Nimelt on ühendused katkendlikud, mistõttu otsuste langetus ja planeerimine peavad arvestama muuhulgas mobiilseadmete liikumistrajektoore. Töö raames valminud prototüüpe testiti Android seadmetel ja simulatsioonides. Lisaks valmis tööriistakomplekt STEP-ONE, mis võimaldab teadlastel hõlpsalt simuleerida ja analüüsida taolisi probleeme erinevais realistlikes stsenaariumites nagu seda on tark linn.The Internet of Things (IoT) promotes solutions such as a smart city, where everyday objects connect with info systems and each other. One example is a road condition monitoring system, where connected vehicles, such as buses, capture video, which is then processed to detect potholes and snow build-up. Building such a solution typically involves establishing a complex centralised system. The centralised approach may become a bottleneck as the number of IoT devices keeps growing. It relies on constant connectivity to all involved devices to make decisions, such as which vehicles to involve in the process. Designing, automating, managing, and monitoring such processes can greatly be supported using the standards and software systems provided by the field of Business Process Management (BPM). However, BPM techniques are not directly applicable to new computing paradigms, such as Fog Computing and Edge Computing, on which the future of IoT relies. Here, a lot of decision-making and processing is moved from central data-centers to devices in the network edge, near the end-users and IoT sensors. For example, video could be processed in mini-datacenters deployed throughout the city, e.g., at bus stops. This load distribution reduces the risk of the ever-growing number of IoT devices overloading the data center. This thesis studies how to reorganise the process execution in this decentralised fashion, where processes must dynamically adapt to the volatile edge environment filled with moving devices. Namely, connectivity is intermittent, so decision-making and planning need to involve factors such as the movement trajectories of mobile devices. We examined this issue in simulations and with a prototype for Android smartphones. We also showcase the STEP-ONE toolset, allowing researchers to conveniently simulate and analyse these issues in different realistic scenarios, such as those in a smart city.  https://www.ester.ee/record=b552551

    Design Principles of Mobile Information Systems in the Digital Transformation of the Workplace - Utilization of Smartwatch-based Information Systems in the Corporate Context

    Get PDF
    During the last decades, smartwatches emerged as an innovative and promising technology and hit the consumer market due to the accessibility of affordable devices and predominant acceptance caused by the considerable similarity to common wristwatches. With the unique characteristics of permanent availability, unobtrusiveness, and hands-free operation, they can provide additional value in the corporate context. Thus, this thesis analyzes use cases for smartwatches in companies, elaborates on the design of smartwatch-based information systems, and covers the usability of smartwatch applications during the development of smartwatch-based information systems. It is composed of three research complexes. The first research complex focuses on the digital assistance of (mobile) employees who have to execute manual work and have been excluded so far from the benefits of the digitalization since they cannot operate hand-held devices. The objective is to design smartwatch-based information systems to support workflows in the corporate context, facilitate the daily work of numerous employees, and make processes more efficient for companies. During a design science research approach, smartwatch-based software artifacts are designed and evaluated in use cases of production, support, security service, as well as logistics, and a nascent design theory is proposed to complement theory according to mobile information system research. The evaluation shows that, on the one hand, smartwatches have enormous potential to assist employees with a fast and ubiquitous exchange of information, instant notifications, collaboration, and workflow guidance while they can be operated incidentally during manual work. On the other hand, the design of smartwatch-based information systems is a crucial factor for successful long-term deployment in companies, and especially limitations according to the small form-factor, general conditions, acceptance of the employees, and legal regulations have to be addressed appropriately. The second research complex addresses smartwatch-based information systems at the office workplace. This broadens and complements the view on the utilization of smartwatches in the corporate context in addition to the mobile context described in the first research complex. Though smartwatches are devices constructed for mobile use, the utilization in low mobile or stationary scenarios also has benefits due they exhibit the characteristic of a wearable computer and are directly connected to the employee’s body. Various sensors can perceive employee-, environment- and therefore context-related information and demand the employees’ attention with proactive notifications that are accompanied by a vibration. Thus, a smartwatch-based and gamified information system for health promotion at the office workplace is designed and evaluated. Research complex three provides a closer look at the topic of usability concerning applications running on smartwatches since it is a crucial factor during the development cycle. As a supporting element for the studies within the first and second research complex, a framework for the usability analysis of smartwatch applications is developed. For research, this thesis contributes a systemization of the state-of-the-art of smartwatch utilization in the corporate context, enabling and inhibiting influence factors of the smartwatch adoption in companies, and design principles as well as a nascent design theory for smartwatch-based information systems to support mobile employees executing manual work. For practice, this thesis contributes possible use cases for smartwatches in companies, assistance in decision-making for the introduction of smartwatch-based information systems in the corporate context with the Smartwatch Applicability Framework, situated implementations of a smartwatch-based information system for typical use cases, design recommendations for smartwatch-based information systems, an implementation of a smartwatch-based information system for the support of mobile employees executing manual work, and a usability-framework for smartwatches to automatically access usability of existing applications providing suggestions for usability improvement

    Novel method for detection of voltage dips in the grid with distributed generation

    Get PDF
    U ovoj doktorskoj disertaciji je predstavljena je nova metoda za detekciju propada napona, zasnovana na Rekurentnoj neuronskoj mreži i analizi u harmonijskom domenu. Metoda je namenjena za primenu u savremenim distributivnim mrežama koje sadrže obnovljive izvore, i u skladu sa tim je optimizovana i testirana. Pametna metoda postiže izuzetne rezultate u brzini detekcije, sa prosečnim vremenom detekcije manjim od 1 ms, uz izuzetnu pouzdanost (preko 97%). U doktorskoj disertaciji dokazana je i druga hipoteza, a to je da je moguće predvideti dubinu propada algoritmom zasnovanim na harmonijskoj analizi.In this PhD thesis, a novel method for the detection of voltage dips (sags), based on the Recurrent Neural Network and analysis in the frequency domain, is presented. The method is intended for use in the modern distribution grids that contains renewable sources, and accordingly it is optimized and tested. The smart method achieves exceptional results in detection speed, with an average detection time of less than 1 ms and with high reliability (over 97%). In the PhD thesis, another hypothesis is proved, which claims that is possible to predict the depth of dip with algorithm based on the harmonic analysis
    corecore