5 research outputs found

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Computer Vision Measurements for Automated Microrobotic Paper Fiber Studies

    Get PDF
    The mechanical characterization of paper fibers and paper fiber bonds determines the key parameters affecting the mechanical properties of paper. Although bulk measurements from test sheets can give average values, they do not yield any real fiber-level data. The current, state-of-the-art methods for fiberlevel measurements are slow and laborious, requiring delicate manual handling of microscopic samples. There are commercial microrobotic actuators that allow automated or tele-operated manipulation of microscopic objects such as fibers, but it is challenging to acquire the data needed to guide such demanding manipulation. This thesis presents a solution to the illumination problem and computer vision algorithms for obtaining the required data. The solutions are designed for a microrobotic platform that comprises actuators for manipulating the fibers and one or two microscope cameras for visual feedback.The algorithms have been developed both for wet fibers, which can be treated as 2D objects, and for dry fibers and fiber bonds, which are treated as 3D objects. The major innovations in the algorithms are the rules for the micromanipulation of the curly fiber strands and the automated 3D measurements of microscale objects with random geometries. The solutions are validated by imaging and manipulation experiments with wet and dry paper fibers and dry paper fiber bonds. In the imaging experiments, the results are compared with the reference data obtained either from an experienced human or another imaging device. The results show that these solutions provide morphological data about the fibers which is accurate and precise enough to enable automated fiber manipulation. Although this thesis is focused on the manipulation of paper fibers and paper fiber bonds, both the illumination solution and the computer vision algorithms are applicable to other types of fibrous materials

    Optical MEMS Switches: Theory, Design, and Fabrication of a New Architecture

    Get PDF
    The scalability and cost of microelectromechanical systems (MEMS) optical switches are now the important factors driving the development of MEMS optical switches technology. The employment of MEMS in the design and fabrication of optical switches through the use of micromachining fabricated micromirrors expands the capability and integrity of optical backbone networks. The focus of this dissertation is on the design, fabrication, and implementation of a new type of MEMS optical switch that combines the advantages of both 2-D and 3-D MEMS switch architectures. This research presents a new digital MEMS switch architecture for 1Ă—N and NĂ—N optical switches. The architecture is based on a new microassembled smart 3-D rotating inclined micromirror (3DRIM). The 3DRIM is the key device in the new switch architectures. The 3DRIM was constructed through a microassembly process using a passive microgripper, key, and inter-lock (PMKIL) assembly system. An electrostatic micromotor was chosen as the actuator for the 3DRIM since it offers continuous rotation as well as small, precise step motions with excellent repeatability that can achieve repeatable alignment with minimum optical insertion loss between the input and output ports of the switch. In the first 3DRIM prototype, a 200Ă—280 microns micromirror was assembled on the top of the electrostatic micromotor and was supported through two vertical support posts. The assembly technique was then modified so that the second prototype can support micromirrors with dimensions up to 400Ă—400 microns. Both prototypes of the 3DRIM are rigid and stable during operation. Also, rotor pole shaping (RPS) design technique was introduced to optimally reshape the physical dimensions of the rotor pole in order to maximize the generated motive torque of the micromotor and minimize the required driving voltage signal. The targeted performance of the 3DRIM was achieved after several PolyMUMPs fabrication runs. The new switch architecture is neither 2-D nor 3-D. Since it is composed of two layers, it can be considered 2.5-D. The new switch overcomes many of the limitations of current traditional 2-D MEMS switches, such as limited scalability and large variations in the insertion loss across output ports. The 1Ă—N MEMS switch fabric has the advantage of being digitally operated. It uses only one 3DRIM to switch the light signal from the input port to any output port. The symmetry employed in the switch design gives it the ability to incorporate a large number of output ports with uniform insertion losses over all output channels, which is not possible with any available 2-D or 3-D MEMS switch architectures. The second switch that employs the 3DRIM is an NĂ—N optical cross-connect (OXC) switch. The design of an NĂ—N OXC uses only 2N of the 3DRIM, which is significantly smaller than the NĂ—N switching micromirrors used in 2-D MEMS architecture. The new NĂ—N architecture is useful for a medium-sized OXC and is simpler than 3-D architecture. A natural extension of the 3DRIM will be to extend its application into more complex optical signal processing, i.e., wavelength-selective switch. A grating structures have been selected to explore the selectivity of the switch. For this reason, we proposed that the surface of the micromirror being replaced by a suitable gratings instead of the flat reflective surface. Thus, this research has developed a rigorous formulation of the electromagnetic scattered near-field from a general-shaped finite gratings in a perfect conducting plane. The formulation utilizes a Fourier-transform representation of the scattered field for the rapid convergence in the upper half-space and the staircase approximation to represent the field in the general-shaped groove. This method provides a solution for the scattered near-field from the groove and hence is considered an essential design tool for near-field manipulation in optical devices. Furthermore, it is applicable for multiple grooves with different profiles and different spacings. Each groove can be filled with an arbitrary material and can take any cross-sectional profile, yet the solution is rigorous because of the rigorous formulations of the fields in the upper-half space and the groove reigns. The efficient formulation of the coefficient matrix results in a banded-matrix form for an efficient and time-saving solution

    Etude et développement d'un capteur de microforce pour la caractérisation de la nanofriction multi-aspérités en micromanipulation dextre

    Get PDF
    Sensor enabling to characterize the finger/object contact involved in dexterousmicromanipulation. Theoretical studies and finite elements simulations have lead tothe conception of this piezoresistive MEMS sensor composed of a central platformwith a micro-ball and surrounded by a compliant table. According to the simulationresults, this sensor is able to independently measure the normal and friction forces(crosstalk less than 1 %) with a good sensitivity. Several runs of fabrication allowedus to obtain usable devices. The mechanical structure of such sensors has beenvalidated by the measurement of resonance frequencies that are consistent with thesimulation results. The first experimental results in terms of force measurement werethen obtained through the development of a test bench (robotic structure, actuators,cameras, etc.). We were also interested in the problem of calibration of micro andnanoforce sensors using magnetic springs connected to measurable masses. In thiscontext, we developed an estimation strategy and a passive rejection of mechanicaldisturbances using a differential principle. This approach was applied to a nanoforcesensor based on the diamagnetic levitation and yielded promising results: a resolutionlower the nanonewton level could be obtained.L’objectif de cette thèse est le développement d’un nouveau capteur de forcemulti-axes destiné à mesurer les composantes de friction impliquées dans lecontact doigt/objet lors la micromanipulation dextre. Des études théoriques etdes simulations par éléments finis ont conduit à la conception de ce capteurMEMS piézorésistif composé d’une plate-forme centrale munie d’une microbille,entourée d’une table compliante. D’après les résultats de simulations, ce capteur estcapable de mesurer indépendamment les forces normales et de frottement (couplageréciproque inférieure à 1%) avec une bonne sensibilité. Différents runs de fabricationnous ont permis d’obtenir des dispositifs exploitables. La structure mécanique de cescapteurs a été validée par la mesure des fréquences de résonance qui sont en accordavec les résultats de simulation. Des premiers résultats expérimentaux en termesde mesure de force ont ensuite été obtenus grâce au développement d’un banc detest (structure robotique, actionneurs, caméras, etc.). Nous nous sommes égalementintéressés à la problématique de l’étalonnage des capteurs de micro et nanoforceà l’aide de ressorts magnétiques reliés à des masses mesurables. Nous avons, danscette optique, mis au point une stratégie d’estimation et de compensation passivedes perturbations mécaniques en utilisant un principe différentiel. Cette approchea été appliquée à un capteur de nanoforce basé sur la lévitation diamagnétique et aabouti à des résultats prometteurs : une résolution inférieure au nanonewton a puêtre obtenue
    corecore