1,206 research outputs found

    Teleoperation experiments with a Utah/MIT hand and a VPL DataGlove

    Get PDF
    A teleoperation system capable of controlling a Utah/MIT Dextrous Hand using a VPL DataGlove as a master is presented. Additionally the system is capable of running the dextrous hand in robotic (autonomous) mode as new programs are developed. The software and hardware architecture used is presented and the experiments performed are described. The communication and calibration issues involved are analyzed and applications to the analysis and development of automated dextrous manipulations are investigated

    Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification

    Get PDF
    This paper reports on the development of two number of robotic hands have been developed which focus on tele-operated high speed anthropomorphic dextrous robotic hands. The aim of developing these hands was to achieve a system that seamlessly interfaced between humans and robots. To provide sensory feedback, to a remote operator tactile sensors were developed to be mounted on the robotic hands. Two systems were developed, the first, being a skin sensor capable of shape reconstruction placed on the palm of the hand to feed back the shape of objects grasped and the second is a highly sensitive tactile array for surface texture identification

    Design and control of a multi-fingered robot hand provided with tactile feedback

    Get PDF
    The design, construction, control and application of a three fingered robot hand with nine degrees of freedom and built-in multi-component force sensors is described. The adopted gripper kinematics are justified and optimized with respect to grasping and manipulation flexibility. The hand was constructed with miniature motor drive systems imbedded into the fingers. The control is hierarchically structured and is implemented on a simple PC-AT computer. The hand's dexterity and intelligence are demonstrated with some experiments

    System description document for the Anthrobot-2: A dexterous robot hand

    Get PDF
    The Anthrobot-2 is an anatomically correct, fully functioning robot hand. The number of fingers, the proportions of the links, the placement and motion of the thumb, and the shape of the palm follow those of the human hand. Each of the finger and thumb joints are servo-controlled. The Anthrobot-2 also includes a two-degree-of-freedom wrist. The entire package, including wrist, hand, and actuators, will mount on the ends of a variety of industrial manipulators. A patent has been applied for on the design. The Anthrobot-2 will be useful in tasks where dexterous manipulation or telemanipulation are required

    Platform Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand

    Get PDF
    Röthling F, Haschke R, Steil JJ, Ritter H. Platform Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand. In: Proc. Int. Conf. on Intelligent Robots and Systems (IROS). IEEE; 2007: 2951-2956

    Dexterous manipulation of unknown objects using virtual contact points

    Get PDF
    The manipulation of unknown objects is a problem of special interest in robotics since it is not always possible to have exact models of the objects with which the robot interacts. This paper presents a simple strategy to manipulate unknown objects using a robotic hand equipped with tactile sensors. The hand configurations that allow the rotation of an unknown object are computed using only tactile and kinematic information, obtained during the manipulation process and reasoning about the desired and real positions of the fingertips during the manipulation. This is done taking into account that the desired positions of the fingertips are not physically reachable since they are located in the interior of the manipulated object and therefore they are virtual positions with associated virtual contact points. The proposed approach was satisfactorily validated using three fingers of an anthropomorphic robotic hand (Allegro Hand), with the original fingertips replaced by tactile sensors (WTS-FT). In the experimental validation, several everyday objects with different shapes were successfully manipulated, rotating them without the need of knowing their shape or any other physical property.Peer ReviewedPostprint (author's final draft
    corecore