443 research outputs found

    A finger mechanism for adaptive end effectors

    Get PDF
    This paper presents design and analysis of a rigid link finger, which may be suitable for a number of adaptive end effectors. The design has evolved from an industrial need for a tele-operated system to be used in nuclear environments. The end effector is designed to assist repair work in nuclear reactors during retrieval operation, particularly for the purpose of grasping objects of various shape, size and mass. The work is based on the University of Southampton's Whole Arm Manipulator, which has a special design consideration for safety and flexibility. The paper discusses kinematic issues associated with the finger design, and to the end of the paper specifies the limits of finger operating parameters for implementing control law

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    Gross motion analysis of fingertip-based within-hand manipulation

    Get PDF
    Fingertip-based within-hand manipulation, also called precision manipulation, refers to the repositioning of a grasped object within the workspace of a multi-fingered robot hand without breaking or changing the contact type between each fingertip and the object. Given a robot hand architecture and a set of assumed contact models, this paper presents a method to perform a gross motion analysis of its precision manipulation capabilities, regardless of the particularities of the object being manipulated. In particular, the technique allows the composition of the displacement manifold of the grasped object relative to the palm of the robot hand to be determined as well as the displacements that can be controlled—useful for high-level design and classification of hand function. The effects of a fingertip contacting a body in this analysis are modeled as kinematic chains composed of passive and resistant revolute joints; what permits the introduction of a general framework for the definition and classification of non-frictional and frictional contact types. Examples of the application of the proposed method in several architectures of multi-fingered hands with different contact assumptions are discussed; they illustrate how inappropriate contact conditions may lead to uncontrollable displacements of the grasped object

    Towards Developing Gripper to obtain Dexterous Manipulation

    Get PDF
    Artificial hands or grippers are essential elements in many robotic systems, such as, humanoid, industry, social robot, space robot, mobile robot, surgery and so on. As humans, we use our hands in different ways and can perform various maneuvers such as writing, altering posture of an object in-hand without having difficulties. Most of our daily activities are dependent on the prehensile and non-prehensile capabilities of our hand. Therefore, the human hand is the central motivation of grasping and manipulation, and has been explicitly studied from many perspectives such as, from the design of complex actuation, synergy, use of soft material, sensors, etc; however to obtain the adaptability to a plurality of objects along with the capabilities of in-hand manipulation of our hand in a grasping device is not easy, and not fully evaluated by any developed gripper. Industrial researchers primarily use rigid materials and heavy actuators in the design for repeatability, reliability to meet dexterity, precision, time requirements where the required flexibility to manipulate object in-hand is typically absent. On the other hand, anthropomorphic hands are generally developed by soft materials. However they are not deployed for manipulation mainly due to the presence of numerous sensors and consequent control complexity of under-actuated mechanisms that significantly reduce speed and time requirements of industrial demand. Hence, developing artificial hands or grippers with prehensile capabilities and dexterity similar to human like hands is challenging, and it urges combined contributions from multiple disciplines such as, kinematics, dynamics, control, machine learning and so on. Therefore, capabilities of artificial hands in general have been constrained to some specific tasks according to their target applications, such as grasping (in biomimetic hands) or speed/precision in a pick and place (in industrial grippers). Robotic grippers developed during last decades are mostly aimed to solve grasping complexities of several objects as their primary objective. However, due to the increasing demands of industries, many issues are rising and remain unsolved such as in-hand manipulation and placing object with appropriate posture. Operations like twisting, altering orientation of object within-hand, require significant dexterity of the gripper that must be achieved from a compact mechanical design at the first place. Along with manipulation, speed is also required in many robotic applications. Therefore, for the available speed and design simplicity, nonprehensile or dynamic manipulation is widely exploited. The nonprehensile approach however, does not focus on stable grasping in general. Also, nonprehensile or dynamic manipulation often exceeds robot\u2019s kinematic workspace, which additionally urges installation of high speed feedback and robust control. Hence, these approaches are inapplicable especially when, the requirements are grasp oriented such as, precise posture change of a payload in-hand, placing payload afterward according to a strict final configuration. Also, addressing critical payload such as egg, contacts (between gripper and egg) cannot be broken completely during manipulation. Moreover, theoretical analysis, such as contact kinematics, grasp stability cannot predict the nonholonomic behaviors, and therefore, uncertainties are always present to restrict a maneuver, even though the gripper is capable of doing the task. From a technical point of view, in-hand manipulation or within-hand dexterity of a gripper significantly isolates grasping and manipulation skills from the dependencies on contact type, a priory knowledge of object model, configurations such as initial or final postures and also additional environmental constraints like disturbance, that may causes breaking of contacts between object and finger. Hence, the property (in-hand manipulation) is important for a gripper in order to obtain human hand skill. In this research, these problems (to obtain speed, flexibility to a plurality of grasps, within-hand dexterity in a single gripper) have been tackled in a novel way. A gripper platform named Dexclar (DEXterous reConfigurable moduLAR) has been developed in order to study in-hand manipulation, and a generic spherical payload has been considered at the first place. Dexclar is mechanism-centric and it exploits modularity and reconfigurability to the aim of achieving within-hand dexterity rather than utilizing soft materials. And hence, precision, speed are also achievable from the platform. The platform can perform several grasps (pinching, form closure, force closure) and address a very important issue of releasing payload with final posture/ configuration after manipulation. By exploiting 16 degrees of freedom (DoF), Dexclar is capable to provide 6 DoF motions to a generic spherical or ellipsoidal payload. And since a mechanism is reliable, repeatable once it has been properly synthesized, precision and speed are also obtainable from them. Hence Dexclar is an ideal starting point to study within-hand dexterity from kinematic point of view. As the final aim is to develop specific grippers (having the above capabilities) by exploiting Dexclar, a highly dexterous but simply constructed reconfigurable platform named VARO-fi (VARiable Orientable fingers with translation) is proposed, which can be used as an industrial end-effector, as well as an alternative of bio-inspired gripper in many robotic applications. The robust four fingered VARO-fi addresses grasp, in-hand manipulation and release (payload with desired configuration) of plurality of payloads, as demonstrated in this thesis. Last but not the least, several tools and end-effectors have been constructed to study prehensile and non-prehensile manipulation, thanks to Bayer Robotic challenge 2017, where the feasibility and their potentiality to use them in an industrial environment have been validated. The above mentioned research will enhance a new dimension for designing grippers with the properties of dexterity and flexibility at the same time, without explicit theoretical analysis, algorithms, as those are difficult to implement and sometime not feasible for real system

    Grasping and Control Issues in Adaptive End Effectors

    Get PDF
    Research into robotic grasping and manipulation has led to the development of a large number of tendon based end effectors. Many are, however, developed as a research tool, which are limited in application to the laboratory environment. The main reason being that the designs requiring a large number of actuators to be controlled. Due to the space and safety requirements, very few have been developed and commissioned for industrial applications. This paper presents design of a rigid link finger operated by a minimum number of actuators, which may be suitable for a number of adaptive end effectors. The adaptive nature built into the end effector (due to limited number of actuators) presents considerable problems in grasping and control. The paper discusses the issues associated with such designs. The research can be applicable to any adaptive end effectors that are controlled by limited number of actuators and evaluates their suitability in industrial environments

    Human to robot hand motion mapping methods: review and classification

    Get PDF
    In this article, the variety of approaches proposed in literature to address the problem of mapping human to robot hand motions are summarized and discussed. We particularly attempt to organize under macro-categories the great quantity of presented methods, that are often difficult to be seen from a general point of view due to different fields of application, specific use of algorithms, terminology and declared goals of the mappings. Firstly, a brief historical overview is reported, in order to provide a look on the emergence of the human to robot hand mapping problem as a both conceptual and analytical challenge that is still open nowadays. Thereafter, the survey mainly focuses on a classification of modern mapping methods under six categories: direct joint, direct Cartesian, taskoriented, dimensionality reduction based, pose recognition based and hybrid mappings. For each of these categories, the general view that associates the related reported studies is provided, and representative references are highlighted. Finally, a concluding discussion along with the authors’ point of view regarding future desirable trends are reported.This work was supported in part by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL under Grant 870133 and in part by the Spanish Government under Grant PID2020-114819GB-I00.Peer ReviewedPostprint (published version

    A Finger Mechanism for Adaptive End Effectors

    Full text link
    • …
    corecore