335 research outputs found

    Digital watermarking and novel security devices

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Copyright Protection of 3D Digitized Sculptures by Use of Haptic Device for Adding Local-Imperceptible Bumps

    Get PDF
    This research aims to improve some approaches for protecting digitized 3D models of cultural heritage objects such as the approach shown in the authors\u27 previous research on this topic. This technique can be used to protect works of art such as 3D models of sculptures, pottery, and 3D digital characters for animated film and gaming. It can also be used to preserve architectural heritage. In the research presented here adding protection to the scanned 3D model of the original sculpture was achieved using the digital sculpting technique with a haptic device. The original 3D model and the model with added protection were after that printed at the 3D printer, and then such 3D printed models were scanned. In order to measure the thickness of added protection, the original 3D model and the model with added protection were compared. Also, two scanned models of the printed sculptures were compared to define the amount of added material. The thickness of the added protection is up to 2 mm, whereas the highest difference detected between a matching scan of the original sculpture (or protected 3D model) and a scan of its printed version (or scan of the protected printed version) is about 1 mm

    A Framework for Multimedia Data Hiding (Security)

    Get PDF
    With the proliferation of multimedia data such as images, audio, and video, robust digital watermarking and data hiding techniques are needed for copyright protection, copy control, annotation, and authentication. While many techniques have been proposed for digital color and grayscale images, not all of them can be directly applied to binary document images. The difficulty lies in the fact that changing pixel values in a binary document could introduce Irregularities that is very visually noticeable. We have seen but limited number of papers proposing new techniques and ideas for document image watermarking and data hiding. In this paper, we present an overview and summary of recent developments on this important topic, and discuss important issues such as robustness and data hiding capacity of the different techniques

    BCR’s CDP Digital Imaging Best Practices, Version 2.0

    Get PDF
    This is the published version.These Best Practices — also referred to as the CDP Best Practices -- have been created through the collaboration of working groups pulled from library, museum and archive practitioners. Version 1 was created through funding from the Institute for Museum and Library Services through a grant to the University of Denver and the Colorado Digitization Program in 2003. Version 2 of the guidelines were published by BCR in 2008 and represents a significant update of practices under the leadership of their CDP Digital Imaging Best Practices Working Group. The intent has been to help standardize and share protocols governing the implementation of digital projects. The result of these collaborations is a set of best practice documents that cover issues such as digital imaging, Dublin Core metadata and digital audio. These best practice documents are intended to help with the design and implementation of digitization projects. Because they were collaboratively designed by experts in the field, you can be certain they include the best possible information, in addition to having been field tested and proven in practice. These best practice documents are an ongoing collaborative project, and LYRASIS will add information and new documents as they are developed

    Managing law practice technology

    Get PDF
    Presented by Barron K. Henley, at a seminar by the same name, held November 17, 2020

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique

    The Wiltshire Wills Feasibility Study

    Get PDF
    The Wiltshire and Swindon Record Office has nearly ninety thousand wills in its care. These records are neither adequately catalogued nor secured against loss by facsimile microfilm copies. With support from the Heritage Lottery Fund the Record Office has begun to produce suitable finding aids for the material. Beginning with this feasibility study the Record Office is developing a strategy to ensure the that facsimiles to protect the collection against risk of loss or damage and to improve public access are created.<p></p> This feasibility study explores the different methodologies that can be used to assist the preservation and conservation of the collection and improve public access to it. The study aims to produce a strategy that will enable the Record Office to create digital facsimiles of the Wills in its care for access purposes and to also create preservation quality microfilms. The strategy aims to seek the most cost effective and time efficient approach to the problem and identifies ways to optimise the processes by drawing on the experience of other similar projects. This report provides a set of guidelines and recommendations to ensure the best use of the resources available for to provide the most robust preservation strategy and to ensure that future access to the Wills as an information resource can be flexible, both local and remote, and sustainable

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    Robust Optical Data Encryption by Projection-Photoaligned Polymer-Stabilized-Liquid-Crystals

    Full text link
    The emerging Internet of Things (IoTs) invokes increasing security demands that require robust encryption or anti-counterfeiting technologies. Albeit being acknowledged as efficacious solutions in processing elaborate graphical information via multiple degrees of freedom, optical data encryption and anti-counterfeiting techniques are typically inept in delivering satisfactory performance without compromising the desired ease-of-processibility or compatibility, thus leading to the exploration of novel materials and devices that are competent. Here, a robust optical data encryption technique is demonstrated utilizing polymer-stabilized-liquid-crystals (PSLCs) combined with projection photoalignment and photopatterning methods. The PSLCs possess implicit optical patterns encoded via photoalignment, as well as explicit geometries produced via photopatterning. Furthermore, the PSLCs demonstrate improved robustness against harsh chemical environments and thermal stability, and can be directly deployed onto various rigid and flexible substrates. Based on this, it is demonstrated that single PSLC is apt to carry intricate information, or serve as exclusive watermark with both implicit features and explicit geometries. Moreover, a novel, generalized design strategy is developed, for the first time, to encode intricate and exclusive information with enhanced security by spatially programming the photoalignment patterns of a pair of cascade PSLCs, which further illustrates the promising capabilies of PSLCs in optical data encryption and anti-counterfeiting
    • …
    corecore