666 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Effective relaying mechanisms in future device to device communication : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in School of Food and Advanced Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesFuture wireless networks embrace a large number of assorted network-enabled devices such as mobile phones, sensor nodes, drones, smart gears, etc., with different applications and purpose, but they all share one common characteristic which is the dependence on strong network connectivity. Growing demand of internet-connected devices and data applications is burdensome for the currently deployed cellular wireless networks. For this reason, future networks are likely to embrace cutting-edge technological advancements in network infrastructure such as, small cells, device-to-device communication, non-orthogonal multiple access scheme (NOMA), multiple-input-multiple out, etc., to increase spectral efficiency, improve network coverage, and reduce network latency. Individual devices acquire network connectivity by accessing radio resources in orthogonal manner which limits spectrum utilisation resulting in data congestion and latency in dense cellular networks. NOMA is a prominent scheme in which multiple users are paired together and access radio resources by slicing the power domain. While several research works study power control mechanisms by base station to communicate with NOMA users, it is equally important to maintain distinction between the users in uplink communication. Furthermore, these users in a NOMA pair are able to perform cooperative relaying where one device assists another device in a NOMA pair to increase signal diversity. However, the benefits of using a NOMA pair in improving network coverage is still overlooked. With a varierty of cellular connected devices, use of NOMA is studied on devices with similar channel characteristics and the need of adopting NOMA for aerial devices has not been investigated. Therefore, this research establishes a novel mechanism to offer distinction in uplink communication for NOMA pair, a relaying scheme to extend the coverage of a base station by utilising NOMA pair and a ranking scheme for ground and aerial devices to access radio resources by NOMA

    Enabling full-duplex in multiple access technique for 5G wireless networks over Rician fading channels

    Get PDF
    Nowadays, unmanned aerial vehicle (UAV) relays’assisted Internet of Things (IoT) systems provide facility in order to overcome the large scale fading between source and sink. The full-duplex scheme enables wireless network to provide higher spectrum efficient technology. This paper analyses performance of two users which are served by new emerging non-orthogonal multiple access (NOMA) technique. Exact outage probability of such two users are derived and checked via Monte-Carlo simulation. These analytical results provide guideline to design UAV in real application. This paper provides a comprehensive study to examine impact of interference, fixed power allocation factors to system performance

    Performance of downlink NOMA with multiple antenna base station, full-duplex and D2D transmission

    Get PDF
    The implementation of non-orthogonal multiple access (NOMA) and transmit antenna selection (TAS) technique has considered in this paper since TAS-aware base station (BS) provides the low cost, low complexity, and high diversity gains. In this paper, we investigate performance of two users by deriving outage probability. The system performance benefits from design of TAS and full-duplex (FD) scheme applied at NOMA users, and bandwidth efficiency will be enhanced although self-interference exists due to FD. The main contribution lies in the exact expressions of outage probability which are derived to exhibit system performance. Different from the simulated parameters, the analytical results show that increasing number of transmit antennas at the BS is way to improve system performance

    Enabling relay selection in non-orthogonal multiple access networks: direct and relaying mode

    Get PDF
    In this paper, we consider downlink non-orthogonal multiple access (NOMA) in which the relay selection (RS) scheme is enabled for cooperative networks. In particular, we investigate impact of the number of relays on system performance in term of outage probability. The main factors affecting on cooperative NOMA performance are fixed power allocations coefficients and the number of relay. This paper also indicate performance gap of the outage probabilities among two users the context of NOMA. To exhibit the exactness of derived formula, we match related results between simulation and analytical methods. Numerical results confirms that cooperative NOMA networks benefit from increasing the number of relay

    PERFORMANCE ANALYSIS IN WIRELESS POWERED D2D- AIDED NON-ORTHOGONAL MULTIPLE ACCESS NETWORKS

    Get PDF
    This paper examine how to integrate energy harvesting (EH) to non-orthogonal multiple access (NOMA) networks. Recently, device-to-device (D2D) underlaying licensed network is introduced as novel transmission mode to perform two nearby user equipment units (UEs) communicating directly without signal processing through the nearest base station (BS). By wireless power transfer, they can be further operational to D2D communications in which a UE may harvest energy from RF signal of dedicated power beacons (PB) to help EH assisted UEs communicate with each other or assist these UEs to communicate with the BS. In particular, we investigate outage and throughput performance in a scenario of D2D communications powered by RF signal where one UE may help other two UEs to exchange information with optimal throughput
    • …
    corecore