35 research outputs found

    Low-frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes

    Get PDF
    We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (electrons vs. holes), and channel lengths, we show that the 1/f fluctuation level in semiconducting nanotubes is correlated to the total number of transport carriers present in the system. However, the 1/f noise level per carrier is not larger than that of most bulk conventional semiconductors, e.g. Si. The pronounced noise level observed in nanotube devices simply reflects on the small number of carriers involved in transport. These results not only provide the basis to quantify the noise behavior in a one-dimensional transport system, but also suggest a valuable way to characterize low-dimensional nanostructures based on the 1/f fluctuation phenomenon

    High-Performance Carbon Nanotube Field-Effect Transistor with Tunable Polarities

    Get PDF
    State-of-the-art carbon nanotube field-effect transistors (CNFETs) behave as Schottky barrier (SB)-modulated transistors. It is known that vertical scaling of the gate oxide significantly improves the performance of these devices. However, decreasing the oxide thickness also results in pronounced ambipolar transistor characteristics and increased drain leakage currents. Using a novel device concept, we have fabricated high-performance, enhancement-mode CNFETs exhibiting n or p-type unipolar behavior, tunable by electrostatic and/or chemical doping, with excellent OFF-state performance and a steep subthreshold swing (S =63 mV/dec). The device design allows for aggressive oxide thickness and gate length scaling while maintaining the desired device characteristics.Comment: 26 pages, 12 figures, accepted for IEEE Trans. Nanotechnolog

    Design of broadband CNFET LNA based on extracted I-V closed-form equation

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A procedure of extracting a closed-form user-friendly I-V equation for short channel carbon nanotube field-effect transistors (CNFET) in the saturation region is presented by employing a relation between CNFET parameters meeting the experimental results. The methodology is based on the Stanford model and ballistic relation of one channel CNFET. In this regard, the ballistic relation is simplified to a closed-form I-V equation, and then, the parameters are estimated through the fitting algorithm by means of ICCAP and least square (LS) method, respectively, and the obtained equation is verified by the experimental results given in the literature. Additionally, an extended quantitative noise analysis is performed at the circuit level and the noise sources implemented in Verilog-A are added to the Stanford CNFET HSPICE model. Subsequently, with the accordance to the extracted I-V equation, a CNFET-based inductor-less broadband common-gate low noise amplifier (LNA) is designed theoretically and its results are confirmed in HSPICE based on the Stanford CNFET model, indicating a proper matching between analysis and simulation. The proposed CNFET-based LNA provides very high frequency bandwidth and also lower noise figure in comparison with its contemporary CMOS-based LNA, without any passive spiral inductor.Peer ReviewedPostprint (author's final draft

    Optimization of CNFET Parameters for High Performance Digital Circuits

    Get PDF
    The Carbon Nanotube Field Effect Transistor (CNFET) is one of the most promising candidates to become successor of silicon CMOS in the near future because of its better electrostatics and higher mobility. The CNFET has many parameters such as operating voltage, number of tubes, pitch, nanotube diameter, dielectric constant, and contact materials which determine the digital circuit performance. This paper presents a study that investigates the effect of different CNFET parameters on performance and proposes a new CNFET design methodology to optimize performance characteristics such as current driving capability, delay, power consumption, and area for digital circuits. We investigate and conceptually explain the performance measures at 32 nm technologies for pure-CNFET, hybrid MOS-CNFET, and CMOS configurations. In our proposed design methodology, the power delay product (PDP) of the optimized CNFET is about 68%, 63%, and 79% less than that of the nonoptimized CNFET, hybrid MOS-CNFET, and CMOS circuits, respectively. Therefore, the proposed CNFET design is a strong candidate to implement high performance digital circuits

    Variability and reliability analysis of carbon nanotube technology in the presence of manufacturing imperfections

    Get PDF
    In 1925, Lilienfeld patented the basic principle of field effect transistor (FET). Thirty-four years later, Kahng and Atalla invented the MOSFET. Since that time, it has become the most widely used type of transistor in Integrated Circuits (ICs) and then the most important device in the electronics industry. Progress in the field for at least the last 40 years has followed an exponential behavior in accordance with MooreÂżs Law. That is, in order to achieve higher densities and performance at lower power consumption, MOS devices have been scaled down. But this aggressive scaling down of the physical dimensions of MOSFETs has required the introduction of a wide variety of innovative factors to ensure that they could still be properly manufactured. Transistors have expe- rienced an amazing journey in the last 10 years starting with strained channel CMOS transistors at 90nm, carrying on the introduction of the high-k/metal-gate silicon CMOS transistors at 45nm until the use of the multiple-gate transistor architectures at 22nm and at recently achieved 14nm technology node. But, what technology will be able to produce sub-10nm transistors? Different novel materials and devices are being investigated. As an extension and enhancement to current MOSFETs some promising devices are n-type III-V and p-type Germanium FETs, Nanowire and Tunnel FETs, Graphene FETs and Carbon Nanotube FETs. Also, non-conventional FETs and other charge-based information carrier devices and alternative information processing devices are being studied. This thesis is focused on carbon nanotube technology as a possible option for sub-10nm transistors. In recent years, carbon nanotubes (CNTs) have been attracting considerable attention in the field of nanotechnology. They are considered to be a promising substitute for silicon channel because of their small size, unusual geometry (1D structure), and extraordinary electronic properties, including excellent carrier mobility and quasi-ballistic transport. In the same way, carbon nanotube field-effect transistors (CNFETs) could be potential substitutes for MOSFETs. Ideal CNFETs (meaning all CNTs in the transistor behave as semiconductors, have the same diameter and doping level, and are aligned and well-positioned) are predicted to be 5x faster than silicon CMOS, while consuming the same power. However, nowadays CNFETs are also affected by manufacturing variability, and several significant challenges must be overcome before these benefits can be achieved. Certain CNFET manufacturing imperfections, such as CNT diameter and doping variations, mispositioned and misaligned CNTs, high metal-CNT contact resistance, the presence of metallic CNTs (m-CNTs), and CNT density variations, can affect CNFET performance and reliability and must be addressed. The main objective of this thesis is to analyze the impact of the current CNFET manufacturing challenges on multi-channel CNFET performance from the point of view of variability and reliability and at different levels, device and circuit level. Assuming that CNFETs are not ideal or non-homogeneous because of today CNFET manufacturing imperfections, we propose a methodology of analysis that based on a CNFET ideal compact model is able to simulate heterogeneous or non-ideal CNFETs; that is, transistors with different number of tubes that have different diameters, are not uniformly spaced, have different source/drain doping levels, and, most importantly, are made up not only of semiconducting CNTs but also metallic ones. This method will allow us to analyze how CNT-specific variations affect CNFET device characteristics and parameters and CNFET digital circuit performance. Furthermore, we also derive a CNFET failure model and propose an alternative technique based on fault-tolerant architectures to deal with the presence of m-CNTs, one of the main causes of failure in CNFET circuits

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    Robust Circuit & Architecture Design in the Nanoscale Regime

    Get PDF
    Silicon based integrated circuit (IC) technology is approaching its physical limits. For sub 10nm technology nodes, the carbon nanotube (CNT) based field effect transistor has emerged as a promising device because of its excellent electronic properties. One of the major challenges faced by the CNT technology is the unwanted growth of metallic tubes. At present, there is no known CNT fabrication technology which allows the fabrication of 100% semiconducting CNTs. The presence of metallic tubes creates a short between the drain and source terminals of the transistor and has a detrimental impact on the delay, static power and yield of CNT based gates. This thesis will address the challenge of designing robust carbon nanotube based circuits in the presence of metallic tubes. For a small percentage of metallic tubes, circuit level solutions are proposed to increase the functional yield of CNT based gates in the presence of metallic tubes. Accurate analytical models with less than a 3% inaccuracy rate are developed to estimate the yield of CNT based circuit for a different percentage of metallic tubes and different drive strengths of logic gates. Moreover, a design methodology is developed for yield-aware carbon nanotube based circuits in the presence of metallic tubes using different CNFET transistor configurations. Architecture based on regular logic bricks with underlying hybrid CNFET configurations are developed which gives better trade-offs in terms of performance, power, and functional yield. In the case when the percentage of metallic tubes is large, the proposed circuit level techniques are not sufficient. Extra processing techniques must be applied to remove the metallic tubes. The tube removal techniques have trade-offs, as the removal process is not perfect and removes semiconducting tubes in addition to removing unwanted metallic tubes. As a result, stochastic removal of tubes from the drive and fanout gate(s) results in large variation in the performance of CNFET based gates and in the worst case open circuit gates. A Monte Carlo simulation engine is developed to estimate the impact of the removal of tubes on the performance and power of CNFET based logic gates. For a quick estimation of functional yield of logic gates, accurate analytical models are developed to estimate the functional yield of logic gates when a fraction of the tubes are removed. An efficient tube level redundancy (TLR) is proposed, resulting in a high functional yield of carbon nanotube based circuits with minimal overheads in terms of area and power when large fraction of tubes are removed. Furthermore, for applications where parallelism can be utilized we propose to increase the functional yield of the CNFET based circuits by increasing the logic depth of gates

    Opportunities for radio frequency nanoelectronic integrated circuits using carbon-based technologies

    Get PDF
    This thesis presents a body of work on the modeling of and performance predictions for carbon nanotube field-effect transistors (CNFET) and graphene field-effect transistors (GFET). While conventional silicon-based CMOS is expected to reach its ultimate scaling limits during the next decade, these two novel technologies are promising candidates for future high-performance electronics. The main goal of this work is to investigate on the opportunities of using such carbon-based electronics for RF integrated circuits. This thesis addresses 1) the modeling of noise and process variability in CNFETs, 2) RF performance predictions for CNFETs, and 3) an accurate GFET compact model. This work proposes the first CNFET noise compact model. Noise is of primary importance for RF applications and its description significantly increases the insight gained from simulation studies. Furthermore, a CNFET variability model is presented, which handles tube synthesis and metal tube removal imperfections. These two model extensions have been added to the Stanford CNFET compact model and allow for the variability-aware RF performance assessment of the CNFET technology. In continuation, comprehensive RF performance projections for CNFETs are provided both on the device and circuit level. The overall set of ITRS RF-CMOS technology requirement FoMs is determined and shows that the CNFET performs excellently in terms of speed, gain, and minimum noise figure. Furthermore, for the first time FoMs are reported for the basic RF building blocks low-noise amplifier and oscillator. In addition, it is shown that CNFET downscaling yields significant performance improvements. Based on these analyses it is confirmed that the CNFET has the potential to outperform Si-CMOS in RF applications. A third key contribution of this thesis is the development of an accurate GFET compact model. Previous compact models simplify several physical aspects, which can cause erroneous simulation results. Here, an accurate yet simple mathematical description of the GFET’s current-voltage relation is proposed and implemented in Verilog-A. Comprehensive error analyses are done in order to highlight the advantages of the new approach. Furthermore, the model is verified against measurement results. The developed GFET model is an important step towards better understanding the characteristics and opportunities of graphene-based analog circuitry

    Carbon Nanotube based approach on FETs using Ternary Comparator

    Get PDF
    A Carbon Nanotube Field Effect Transistor (CNFET) is referred to as a FET that utilizes a single Carbon Nanotube or an array of carbon nanotubes as the channel material instead of bulk silicon in the traditional MOSFET structure. New approach of ternary magnitude comparator based on the CNFET ternary logic gates. These gates are promising alternative to conventional logic design because of its energy efficiency, it can accomplish by the reduced circuit on ternary logic. Ternary comparator implementation is based on prefix based design and combines ternary and binary logic gates for optimized implementation. A novel approach of a comparator has been implemented and simulated using SPICE. A design response indicates that the 1-bit comparator consumes less power say 0.65µW and has a delay of 21ps. The simulation results for comparators with versatile lengths of operands
    corecore