146,967 research outputs found

    Modelling incomplete fusion dynamics of weakly-bound nuclei at near-barrier energies

    Full text link
    The classical dynamical model for reactions induced by weakly-bound nuclei at near-barrier energies is developed further. It allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the population of high-spin states in reaction products as well as the angular distribution of direct alpha-production. Model calculations indicate that incomplete fusion is an effective mechanism for populating high-spin states, and its contribution to the direct alpha production yield diminishes with decreasing energy towards the Coulomb barrier. It also becomes notably separated in angles from the contribution of no-capture breakup events. This should facilitate the experimental disentanglement of these competing reaction processes.Comment: 12 pages, 7 figures (for better resolution figures please contact the author), Accepted in Journal of Physics

    Two dimensional Sen connections and quasi-local energy-momentum

    Full text link
    The recently constructed two dimensional Sen connection is applied in the problem of quasi-local energy-momentum in general relativity. First it is shown that, because of one of the two 2 dimensional Sen--Witten identities, Penrose's quasi-local charge integral can be expressed as a Nester--Witten integral.Then, to find the appropriate spinor propagation laws to the Nester--Witten integral, all the possible first order linear differential operators that can be constructed only from the irreducible chiral parts of the Sen operator alone are determined and examined. It is only the holomorphy or anti-holomorphy operator that can define acceptable propagation laws. The 2 dimensional Sen connection thus naturally defines a quasi-local energy-momentum, which is precisely that of Dougan and Mason. Then provided the dominant energy condition holds and the 2-sphere S is convex we show that the next statements are equivalent: i. the quasi-local mass (energy-momentum) associated with S is zero; ii.the Cauchy development D(Σ)D(\Sigma) is a pp-wave geometry with pure radiation (D(Σ)D(\Sigma) is flat), where Σ\Sigma is a spacelike hypersurface whose boundary is S; iii. there exist a Sen--constant spinor field (two spinor fields) on S. Thus the pp-wave Cauchy developments can be characterized by the geometry of a two rather than a three dimensional submanifold.Comment: 20 pages, Plain Tex, I

    Floriculture world wide; production, trade and consumption patterns show market opportunities and challenges

    Get PDF
    Floricultural production contains a wide variety of products. The production value world wide has been rising from 11 billion to 60 billion dollars in 2003 (estimate). Europe is traditionally a large producer and trader, with a stable production value of about 10 billion dollars (2002). North America has a production value of about 6,5 billion dollars. In Asia production capacity is growing rapidly in several countries. In Africa the production has emerged enormously, but in a risky environment. Oceania is a small producer. Looking a inter- and intra continental trade in 2002 the following view occurs. Europe and USA have the largest intra continental trade. Latin America, Africa, Asia and Europe export to these continents. Of the existing markets USA has emerged the last decade. Further more the consumption per capita has been rising due to rise of income and developments in culture in countries in Europe, USA and Japan. Asia and Easter Europe have big potential as new markets because the level of prosperity is rising. Totally the worldwide demand has grown. For high volume bulky product we see a South-North pattern. For high quality product there are niche markets world wide. While we see the international trade increasing, the regional supply will be leading. Parallel WTO liberalises the world trade, non-trade barriers occur. This, together with changing from a product driven to a demand driven market, requires strategies for market access. Co-operation in supply chains offers possibilities.Production, Crop Production/Industries,

    Mechanism Deduction from Noisy Chemical Reaction Networks

    Full text link
    We introduce KiNetX, a fully automated meta-algorithm for the kinetic analysis of complex chemical reaction networks derived from semi-accurate but efficient electronic structure calculations. It is designed to (i) accelerate the automated exploration of such networks, and (ii) cope with model-inherent errors in electronic structure calculations on elementary reaction steps. We developed and implemented KiNetX to possess three features. First, KiNetX evaluates the kinetic relevance of every species in a (yet incomplete) reaction network to confine the search for new elementary reaction steps only to those species that are considered possibly relevant. Second, KiNetX identifies and eliminates all kinetically irrelevant species and elementary reactions to reduce a complex network graph to a comprehensible mechanism. Third, KiNetX estimates the sensitivity of species concentrations toward changes in individual rate constants (derived from relative free energies), which allows us to systematically select the most efficient electronic structure model for each elementary reaction given a predefined accuracy. The novelty of KiNetX consists in the rigorous propagation of correlated free-energy uncertainty through all steps of our kinetic analyis. To examine the performance of KiNetX, we developed AutoNetGen. It semirandomly generates chemistry-mimicking reaction networks by encoding chemical logic into their underlying graph structure. AutoNetGen allows us to consider a vast number of distinct chemistry-like scenarios and, hence, to discuss assess the importance of rigorous uncertainty propagation in a statistical context. Our results reveal that KiNetX reliably supports the deduction of product ratios, dominant reaction pathways, and possibly other network properties from semi-accurate electronic structure data.Comment: 36 pages, 4 figures, 2 table

    Quantum many-body systems out of equilibrium

    Get PDF
    Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.Comment: 7 pages, review and perspectives article, updated to journal version after embarg
    • …
    corecore