78,801 research outputs found

    Introduction to the special issue on probability, logic and learning

    Get PDF
    Recently, the combination of probability, logic and learning has received considerable attention in the artificial intelligence and machine learning communities; see e.g. Getoor and Taskar (2007); De Raedt et al. (2008). Computational logic often plays a major role in these developments since it forms the theoretical backbone for much of the work in probabilistic programming and logical and relational learning. Contemporary work in this area is often application- and experiment-driven, but is also concerned with the theoretical foundations of formalisms and inference procedures and with advanced implementation technology that scales well

    Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics

    Get PDF
    The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics

    Sensor Signal and Information Processing II [Editorial]

    Get PDF
    This Special Issue compiles a set of innovative developments on the use of sensor signals and information processing. In particular, these contributions report original studies on a wide variety of sensor signals including wireless communication, machinery, ultrasound, imaging, and internet data, and information processing methodologies such as deep learning, machine learning, compressive sensing, and variational Bayesian. All these devices have one point in common: These algorithms have incorporated some form of computational intelligence as part of their core framework in problem solving. They have the capacity to generalize and discover knowledge for themselves, learning to learn new information whenever unseen data are captured

    Computing brains: neuroscience, machine intelligence and big data in the cognitive classroom

    Get PDF
    The human brain has become a major topic in education. The field of educational neuroscience, or neuroeducation, is flourishing. At the same time, a number of initiatives based in computer science departments and major technology companies are also taking the brain seriously. Computer scientists talk of developing new brain-inspired cognitive learning systems, or of developing new theoretical and computational understandings of the brain in order to then build new and more effective forms of machine intelligence. The important aspect of these synchronous developments in neuroscience and brain-based systems is that they are beginning to come together in particular technological developments and products targeted specifically at schools

    Intelligent modeling with physics-informed machine learning for petroleum engineering problems

    Get PDF
    The advancement in big data and artificial intelligence has enabled a novel exploration mode for the study of petroleum engineering. Unlike theory-based solution methods, the data-driven intelligent approaches demonstrate superior flexibility, computational efficiency and accuracy for dealing with complex multi-scale, and multi-physics problems. However, these intelligent models often disregard physical laws in pursuit of error minimization, which leads to certain uncertainties. Therefore, physics-informed machine learning approaches have been developed based on data, guided by physics, and supported by machine learning models. This study summarizes four embedding mechanisms for introducing physical information into machine learning models, including input databased embedding, model architecture-based embedding, loss function-based embedding, and model optimization-based embedding mechanism. These “data + physics” dualdriven intelligent models not only exhibit higher prediction accuracy while adhering to physic laws, but also accelerate the convergence to improve computational efficiency. This paradigm will facilitate the guide developments in solving petroleum engineering problems toward a more comprehensive and efficient direction.Cited as: Xie, C., Du, S., Wang, J., Lao, J., Song, H. Intelligent modeling with physics-informed machine learning for petroleum engineering problems. Advances in Geo-Energy Research, 2023, 8(2): 71-75. https://doi.org/10.46690/ager.2023.05.0

    Continuous Perception for Immersive Interaction and Computation in Molecular Sciences

    Get PDF
    Chemistry aims to understand the structure and reactions of molecules, which involve phenomena occurring at microscopic scales. However, scientists perceive the world at macroscopic scales, making it difficult to study complex molecular objects. Graphical representations, such as structural formulas, were developed to bridge this gap and aid in understanding. The advent of Quantum Mechanics further increased the complexity of the representation of microscopic objects. This dichotomy between conceptual representation and predictive quantification forms the foundation of Chemistry, now further explored with the rise of Artificial Intelligence. Recent advancements in computational sciences, increased computational power, and developments in Machine-Learning (ML) raise questions about the traditional scientific method. Computational scientists, who have relied on approximations based on fundamental rules, now face the possibility of accurately simulating nature without strictly adhering to its laws. This shift challenges the association between progress in understanding a phenomenon and the ability to predict it. Deep learning models can not only make predictions but also create new data. While these techniques find applications in fields like Natural Language Processing, they suffer from limitations and lack true intelligence or awareness of physical laws. The thesis aims to create mathematical descriptors for atom types, bond types, and angle types in ML procedures, ensuring the retention of their chemical meaning. The goal is to make quantitative predictions while interpreting changes in descriptors as chemical changes. To achieve this, the thesis develops a software called Proxima for Molecular Perception, which automatically perceives features from molecules. Proxima treats strongly coupled electrons as covalent bonds and lone pairs, while delocalized electrons are modeled using a Tight-Binding model. The resulting Molecular Graph captures the weak interactions between these units. Overall, this thesis explores the intersection of computational chemistry and Machine-Learning to enhance our understanding and predictive capabilities in the field of Chemistry by building the so-called Virtual Laboratory, a virtual environment with automatic access to structural databases to test chemical ideas on the fly (pre-processing) and explore the output of computational software (post-processing).  &nbsp
    • …
    corecore