7,927 research outputs found

    Advanced digital SAR processing study

    Get PDF
    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented

    New developments in rain–wind-induced vibrations of cables

    Get PDF
    On wet and windy days, the inclined cables of cable stayed bridges can experience large amplitude, potentially damaging oscillations known as rain-wind-induced vibration (RWIV). RWIV is believed to be the result of a complicated non-linear interaction between rivulets of rain water that run down the cables and the wind loading on the cables from the unsteady aerodynamics; however, despite a considerable international research effort, the underlying physical mechanism that governs this oscillation is still not satisfactorily understood. An international workshop on RWIV was held in April 2008, hosted at the University of Strathclyde. The main outcomes of this workshop are summarised in the paper. A numerical method to investigate aspects of the RWIV phenomenon has recently been developed by the authors, which couples an unsteady aerodynamic solver to a thin-film model based on lubrication theory for the flow of the rain water to ascertain the motion of the rivulets owing to the unsteady aerodynamic field. This novel numerical technique, which is still in the relatively early stages of development, has already provided useful information on the coupling between the external aerodynamic flow and the rivulet, and a summary of some of the key results to date is presented

    Machine Learning of Coq Proof Guidance: First Experiments

    Full text link
    We report the results of the first experiments with learning proof dependencies from the formalizations done with the Coq system. We explain the process of obtaining the dependencies from the Coq proofs, the characterization of formulas that is used for the learning, and the evaluation method. Various machine learning methods are compared on a dataset of 5021 toplevel Coq proofs coming from the CoRN repository. The best resulting method covers on average 75% of the needed proof dependencies among the first 100 predictions, which is a comparable performance of such initial experiments on other large-theory corpora

    Description and simulation of physics of Resistive Plate Chambers

    Full text link
    Monte-Carlo simulation of physical processes is an important tool for detector development as it allows to predict signal pulse amplitude and timing, time resolution, efficiency ... Yet despite the fact they are very common, full simulations for RPC-like detector are not widespread and often incomplete. They are often based on mathematical distributions that are not suited for this particular modelisation and over-simplify or neglect some important physical processes. We describe the main physical processes occurring inside a RPC when a charged particle goes through (ionisation, electron drift and multiplication, signal induction ...) through the Riegler-Lippmann-Veenhof model together with a still-in-development simulation. This is a full, fast and multi-threaded Monte-Carlo modelisation of the main physical processes using existing and well tested libraries and framework (such as the Garfield++ framework and the GNU Scientific Library). It is developed in the hope to be a basic ground for future RPC simulation developments.Comment: 6 pages, 8 figures, proceeding of the 13th Workshop on Resistive Plate Chambers and Related Detector

    Dynamic models with non clearing markets

    Get PDF
    Abstract This article studies a new class of models which synthesize the two traditions of general equilibrium with nonclearing markets and imperfect competition on the one hand, and dynamic stochastic general equilibrium (DSGE) models on the other hand. This line of models has become a central paradigm of modern macroeconomics for at least three reasons: (a) it displays solid microeconomic foundations, (b) it is a highly synthetic theory, which combines in a unified framework general equilibrium, nonclearing markets, imperfect competition, growth theory and rational expectations, (c) it is also an empirical success, leading to substantial progress towards matching real world statistics.dynamic stochastic models ; general equilibrium ; non clearing markets ; imperfect competition
    corecore