1,605 research outputs found

    Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    Get PDF
    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories

    Using integrated knowledge acquisition to prepare sophisticated expert plans for their re-use in novel situations

    Get PDF
    Plans which were constructed by human experts and have been repeatedly executed to the complete satisfaction of some customer in a complex real world domain contain very valuable planning knowledge. In order to make this compiled knowledge re-usable for novel situations, a specific integrated knowledge acquisition method has been developed: First, a domain theory is established from documentation materials or texts, which is then used as the foundation for explaining how the plan achieves the planning goal. Secondly, hierarchically structured problem class definitions are obtained from the practitioners\u27 highlevel problem conceptualizations. The descriptions of these problem classes also provide operationality criteria for the various levels in the hierarchy. A skeletal plan is then constructed for each problem class with an explanation-based learning procedure. These skeletal plans consist of a sequence of general plan elements, so that each plan element can be independently refined. The skeletal plan thus accounts for the interactions between the various concrete operations of the plan at a general level. The complexity of the planning problem is thereby factored in a domain-specific way and the compiled knowledge of sophisticated expert plans can be re-used in novel situations

    Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    Get PDF
    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen

    Hierarchical skeletal plan refinement : task- and inference structures

    Get PDF
    This paper presents the task- and inference structure for skeletal plan refinement which was developed for lathe production planning, the application domain of the ARC-TEC project. Two inference structures are discussed: a global inference structure which was developed in the first phase of knowledge acquisition and a more detailed inference structure which builds on the hierarchical organization of the skeletal plans. The described models are evaluated with respect to their cognitive adequacy and their scope of application. The benefits and limitations of the KADS knowledge acquisition methodology are discussed with respect to the development of the two models

    Clamping, COKAM, KADS, and OMOS : the construction and operationalization of a KADS conceptual model

    Get PDF
    For a simplified version of the clamping tool selection problem in mechanical engineering, the knowledge acquisition tool COKAM is applied to obtain an informal knowledge base and explanation structures from technical documents and previously solved cases. The output of COKAM is used to construct a three layered KADS conceptual model, which is then transformed into an operational model in the language OMOS. The OMOS formalization allows to verify the informal KADS conceptual model and to check the completeness of the domain knowledge. The results of this analysis are utilized in the next knowledge elicitation session with COKAM

    Recent advances in micro- and nano-machining technologies

    Get PDF

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    FEAT-REP : representing features in CAD/CAM

    Get PDF
    When CAD/CAM experts view a workpiece, they perceive it in terms of their own expertise. These terms, called features, which are build upon a syntax (geometry) and a semantic (e.g. skeletal plans in manufacturing or functional relations in design), provide an abstraction mechanism to facilitate the creation, manufacturing and analysis of workpieces. Our goal is to enable experts to represent their own feature-language via a feature-grammar in the computer to build feature-based systems e.g. CAPP systems. The application of formal language terminology to the feature definitions facilitates the use of well-known formal language methods in conjunction with our flexible knowledge representation formalism FEAT-REP which will be presented in this paper

    Shape and topology optimisation for manufactured products

    Get PDF

    Intelligent documentation as a catalyst for developing cooperative knowledge-based systems

    Get PDF
    In the long run, the development of cooperative knowledge-based systems for complex real world domains such as production planning in mechanical engineering should yield significant economic returns. However, large investments have already been made into the conventional technology. Intelligent documentation, which abstracts the current practice of the industry, is suggested as a stepping stone for developing such knowledge-based systems. A set of coordinated knowledge acquisition tools has been developed by which intelligent documents are constructed as an intermediate product, which by itself is already useful. Within the frame of the conventional technology, the task- and domain specific hypertext structures allow the reuse of production plans while simultaneously starting the development process for knowledge based systems
    corecore