208 research outputs found

    The correlation of visibility noise and its impact on the radiometric resolution of an aperture synthesis radiometer

    Get PDF
    The correlation between the visibility samples' noise of an aperture synthesis radiometer are required for the computation of the recovered temperature noise of a given pixel and of the improvement introduced by baseline redundance. A general expression for this correlation and noise examples for a linear array are presented.Peer ReviewedPostprint (published version

    Estar to SMOS: Development of Interferometric Radiometry for Remote Sensing from Space

    Get PDF
    ESTAR is an L-band radiometer that employs synthesis (interferometry) to obtain resolution in the across track dimension. It was designed as an aircraft prototype to demonstrate the technology of aperture synthesis for remote sensing of the earth from space. ESTAR was successful in several soil moisture and ocean salinity remote sensing experiments and demonstrated the potential of aperture synthesis for remote sensing. Among the lessons learned during the development of ESTAR are the scene dependence of calibration, that RFI is a problem, and the robustness of noise injection for the zero spacing radiometer. ESTAR was the first step in a path toward realizing aperture synthesis technology in space (e.g. SMOS). ESTAR was followed by a new instrument, 2D-STAR, which employs synthesis in both dimensions. 2D-STAR was tested in 2002 and participated in the SMEX field campaigns in 2003 and 2004

    Antenna Array Design in Aperture Synthesis Radiometers

    Get PDF

    Two-Dimensional Synthetic Aperture Radiometry over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    Get PDF
    Microwave radiometry at low frequencies (L-band, approx. 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be addressed by interferometric technology called aperture synthesis. The Soil Moisture and Ocean Salinity (SMOS) mission will apply this technique to monitor global-scale surface parameters in the near future. The first airborne experiment using an aircraft prototype of this approach, the Two-Dimensional Synthetic Aperture Radiometer (2D-STAR), was performed in the Soil Moisture Experiment in 2003 (SMEX03). The L-band brightness temperature data acquired in Alabama by the 2DSTAR was compared with ground-based measurements of soil moisture and with C-band data collected by the Polarimetric Scanning Radiometer (PSR). Our results demonstrate a good response of the 2D-STAR brightness temperature to changes in surface wetness, both in agricultural and forest lands. The behavior of the horizontally polarized brightness temperature data with increasing view-angle over the forest area was noticeably different than over bare soil. The results from the comparison of 2D-STAR and PSR indicate a better response of the 2D-STAR to the surface wetness under both wet and dry conditions. Our results have important implications for the performance of the future SMOS mission

    The correlation of visibility errors and its impact on the radiometric resolution of an aperture synthesis radiometer

    Get PDF
    The correlation between the visibility samples' noise of an aperture synthesis radiometer are required for the computation of the recovered temperature noise of a given pixel and of the improvement introduced by baseline redundance. A general expression for this correlation and noise examples for a linear array are presented.Peer Reviewe

    Output data formatter for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    Get PDF
    A prototype Output Data Formatter (ODF) for the ESTAR (Electronically Scanned Thinned Array Radiometer) instrument has been designed and tested. It employs programmable logic devices to format and tag correlator data for transmission to Earth. After accepting 170 bits or correlator and error data in parallel, it appends an identification word and then serially passes the data to the Small Explorer Data System (SEDS) for transmission at a maximum rate of greater than 15 Mb/sec. Implemented with two reprogrammable field programmable gate arrays (FPGA's), each contained in a 132-pin plastic pin grid array (PGA) package, the design is cascadeable, fully testable, and low-power

    A 2D Synthetic Aperture Radiometry Demonstrator by Switching Strategy at X band

    Get PDF
    International audienceThe broad topic of the presented paper consists in the research on novel methods in the field of microwave imaging, in particular the so-called passive microwave / millimeter-wave imaging, which is also referred to radiometric imaging. This study focuses on proximity range applications such as concealed objects detection, human body screening, etc. The aim is to design a low cost and compact fully electronic passive imaging system suitable for short-range 2D imaging applications, and study the necessary devices for the implementation of a complete demonstrator. In this study, a new approach based on the use of a switch sub-matrix strategy has been adapted into a complete antenna system at X band. The main objective of this prototype is to validate this approach experimentally. Image quality is examined by using the interferometric aperture synthesis technique and G-matrix calibration imaging algorithms. The spatial resolution is measured by using the emission from noise source and is compared with theory

    A 2D Synthetic Aperture Radiometry Demonstrator by Switching Strategy at X band

    Get PDF
    International audienceThe broad topic of the presented paper consists in the research on novel methods in the field of microwave imaging, in particular the so-called passive microwave / millimeter-wave imaging, which is also referred to radiometric imaging. This study focuses on proximity range applications such as concealed objects detection, human body screening, etc. The aim is to design a low cost and compact fully electronic passive imaging system suitable for short-range 2D imaging applications, and study the necessary devices for the implementation of a complete demonstrator. In this study, a new approach based on the use of a switch sub-matrix strategy has been adapted into a complete antenna system at X band. The main objective of this prototype is to validate this approach experimentally. Image quality is examined by using the interferometric aperture synthesis technique and G-matrix calibration imaging algorithms. The spatial resolution is measured by using the emission from noise source and is compared with theory

    A synthetic aperture interferometric radiometer test at X-band for potential improvements at W-band

    Get PDF
    International audienceThe broad topic of the presented paper consists in the research on novel methods in the field of microwave imaging, in particular the so-called passive microwave / millimeter-wave imaging, which is also referred to radiometric imaging. This study focuses on proximity range applications such as concealed objects detection, human body screening, etc. The aim is to design a low cost and compact fully electronic passive imaging system suitable for short-range 2D imaging applications, and study the necessary devices for the implementation of a complete demonstrator. In this study, a new approach based on the use of a switch sub-matrix strategy has been adapted into a complete antenna system at X band. The main objective of this prototype is to validate this approach experimentally. Image quality is examined by using the interferometric aperture synthesis technique and G-matrix calibration imaging algorithms. The spatial resolution is measured using the emission from noise source and compared with theory
    • …
    corecore