22,356 research outputs found

    Context-aware Assessment Using QR-codes

    Get PDF
    In this paper we present the implementation of a general mechanism to deliver tests based on mobile devices and matrix codes. The system is an extension of Siette, and has not been specifically developed for any subject matter. To evaluate the performance of the system and show some of its capabilities, we have developed a test for a second-year college course on Botany at the School of Forestry Engineering. Students were equipped with iPads and took an outdoor test on plant species identification. All students were able to take and complete the test in a reasonable time. Opinions expressed anonymously by the students in a survey about the usability of the system and the usefulness of the test were very favorable. We think that the application presented in this paper can broaden the applicability of automatic assessment techniques.The presentation of this work has been co-founded by the Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200

    Pedagogical strategies and technologies for peer assessment in Massively Open Online Courses (MOOCs)

    Get PDF
    Peer assessment has been mooted as an effective strategy for scaling­-up higher education and its core values to the proportions envisaged in the idea of Massively Open Online Courses (MOOCs). If this is to become reality, what role will academic technologies play? What technologies will we need to provide? What learning design strategies and patterns will those technologies need to enable? This paper aims to explore the potential role of peer assessment in MOOCs, so as to get an informed sense of technology requirements. However, as will be seen, three of the four elements in the title “pedagogical strategies and technologies for peer assessment in MOOCs” vary radically for both practical and philosophical reasons, with significant implications for technology requirements. Worse still, the picture is evolving in non­linear relation to new technologies and MOOC initiatives. An overview of the various trends and differences is useful, but not conclusive. At points in the text learning design strategies, patterns and technologies are mentioned as possible ways in which peer assessment in MOOCs of various kinds might be implemented. These cases are highlighted in bold so as to stand out. They are also, in some cases, developed into simple design patterns, described in Appendix A. It should be noted, however, that they should be read within the wider pedagogical contexts within which they appear in the main body of the text

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Advancement Auto-Assessment of Students Knowledge States from Natural Language Input

    Get PDF
    Knowledge Assessment is a key element in adaptive instructional systems and in particular in Intelligent Tutoring Systems because fully adaptive tutoring presupposes accurate assessment. However, this is a challenging research problem as numerous factors affect students’ knowledge state estimation such as the difficulty level of the problem, time spent in solving the problem, etc. In this research work, we tackle this research problem from three perspectives: assessing the prior knowledge of students, assessing the natural language short and long students’ responses, and knowledge tracing.Prior knowledge assessment is an important component of knowledge assessment as it facilitates the adaptation of the instruction from the very beginning, i.e., when the student starts interacting with the (computer) tutor. Grouping students into groups with similar mental models and patterns of prior level of knowledge allows the system to select the right level of scaffolding for each group of students. While not adapting instruction to each individual learner, the advantage of adapting to groups of students based on a limited number of prior knowledge levels has the advantage of decreasing the authoring costs of the tutoring system. To achieve this goal of identifying or clustering students based on their prior knowledge, we have employed effective clustering algorithms. Automatically assessing open-ended student responses is another challenging aspect of knowledge assessment in ITSs. In dialogue-based ITSs, the main interaction between the learner and the system is natural language dialogue in which students freely respond to various system prompts or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely generated student responses in such contexts is challenging as students can express the same idea in different ways owing to different individual style preferences and varied individual cognitive abilities. To address this challenging task, we have proposed several novel deep learning models as they are capable to capture rich high-level semantic features of text. Knowledge tracing (KT) is an important type of knowledge assessment which consists of tracking students’ mastery of knowledge over time and predicting their future performances. Despite the state-of-the-art results of deep learning in this task, it has many limitations. For instance, most of the proposed methods ignore pertinent information (e.g., Prior knowledge) that can enhance the knowledge tracing capability and performance. Working toward this objective, we have proposed a generic deep learning framework that accounts for the engagement level of students, the difficulty of questions and the semantics of the questions and uses a novel times series model called Temporal Convolutional Network for future performance prediction. The advanced auto-assessment methods presented in this dissertation should enable better ways to estimate learner’s knowledge states and in turn the adaptive scaffolding those systems can provide which in turn should lead to more effective tutoring and better learning gains for students. Furthermore, the proposed method should enable more scalable development and deployment of ITSs across topics and domains for the benefit of all learners of all ages and backgrounds
    • …
    corecore