42,367 research outputs found

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface

    Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients

    Get PDF
    Objective: To explore possible functional effects of the Handmaster in tetraplegia and to determine suitable patients for the system. \ud \ud Patients: Patients with a cervical spinal cord injury between C4 and C6, motor group 0-3. Important selection criteria were a stable clinical situation and the absence of other medical problems and complications. \ud \ud Design: Ten patients were consecutively selected from the in- and outpatient department of a large rehabilitation hospital in The Netherlands. Each patient was fitted with a Handmaster by a qualified therapist and underwent muscle strength and functional training for at least 2 months. \ud \ud Methods: Functional evaluation comprised the performance of a defined set of tasks and at least one additional task as selected by patients themselves. Tasks were performed both with and without the Handmaster. Finally, patients were asked for their opinion on Handmaster use as well as their willingness to future use. \ud \ud Results: In six patients a stimulated grasp and release with either one or both grasp modes (key- and palmar pinch) of the Handmaster was possible. Four patients could perform the set of tasks using the Handmaster, while they were not able to do so without the Handmaster. Eventually, one patient continued using the Handmaster during ADL at home. \ud \ud Conclusion: The Handmaster has a functional benefit in a limited group of patients with a C5 SCI motor group 0 and 1. Suitable patients should have sufficient shoulder and biceps function combined with absent or weak wrist extensors. Though functional use was the main reason for using the Handmaster, this case series showed that therapeutic use can also be considered. \ud \u

    Mobile Interface for a Smart Wheelchair

    Get PDF
    Smart wheelchairs are designed for severely motor impaired people that have difficulties to drive standard -manual or electric poweredwheelchairs. Their goal is to automate driving tasks as much as possible in order to minimize user intervention. Nevertheless, human involvement is still necessary to maintain high level task control. Therefore in the interface design it is necessary to take into account the restrictions imposed by the system (mobile and small), by the type of users (people with severe motor restrictions) and by the task (to select a destination among a number of choices in a structured environment). This paper describes the structure of an adaptive mobile interface for smart wheelchairs that is driven by the context.Comisión Interministerial de Ciencia y Tecnología TER96-2056-C02-0
    corecore