2,832 research outputs found

    Extrusion-based additive manufacturing of concrete products. Revolutionizing and remodeling the construction industry

    Get PDF
    Additive manufacturing is one of the main topics of the fourth industrial revolution; defined as Industry 4.0. This technology offers several advantages related to the construction and architectural sectors; such as economic; environmental; social; and engineering benefits. The usage of concrete in additive technologies allows the development of innovative applications and complexity design in the world of construction such as buildings; housing modules; bridges; and urban and domestic furniture elements. The aim of this review was to show in detail a general panoramic of extrusion-based additive processes in the construction sector; the main advantages of using additive manufacturing with the respect to traditional manufacturing; the fundamental requirements of 3D printable material (fresh and hardened properties), and state-of-the-art aesthetic and architectural projects with functional properties

    Enabling technologies for precise aerial manufacturing with unmanned aerial vehicles

    Get PDF
    The construction industry is currently experiencing a revolution with automation techniques such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM) is a key technology that can o er productivity improvement in the construction industry by means of o -site prefabrication and on-site construction with automated systems. The key bene t is that building elements can be fabricated with less materials and higher design freedom compared to traditional manual methods. O -site prefabrication with AM has been investigated for some time already, but it has limitations in terms of logistical issues of components transportation and due to its lack of design exibility on-site. On-site construction with automated systems, such as static gantry systems and mobile ground robots performing AM tasks, can o er additional bene ts over o -site prefabrication, but it needs further research before it will become practical and economical. Ground-based automated construction systems also have the limitation that they cannot extend the construction envelope beyond their physical size. The solution of using aerial robots to liberate the process from the constrained construction envelope has been suggested, albeit with technological challenges including precision of operation, uncertainty in environmental interaction and energy e ciency. This thesis investigates methods of precise manufacturing with aerial robots. In particular, this work focuses on stabilisation mechanisms and origami-based structural elements that allow aerial robots to operate in challenging environments. An integrated aerial self-aligning delta manipulator has been utilised to increase the positioning accuracy of the aerial robots, and a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing (AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities to overcome uncertainty in environmental interaction with impact protection capabilities and improved robustness for UAV. Design principles using tensile anchoring methods have been explored, enabling low-power operation and explores possibility of low-power aerial stabilisation. The results demonstrate that precise aerial manufacturing needs to consider not only just the robotic aspects, such as ight control algorithms and mechatronics, but also material behaviour and environmental interaction as factors for its success.Open Acces

    An innovative machine for Fused Deposition Modeling of metals and advanced ceramics

    Get PDF
    The design of a new additive manufacturing (AM) system based on extrusion and 3D deposition of a mixture of metal (or advanced ceramic) powder and polymeric binder is described in this paper. The proposed system is totally innovative in terms of combination of deposited work material, extrusion system (head and nozzle), and deposition work table, which is based on a 5-axes parallel kinematics machine (PKM). The extrusion head and nozzle have been designed in order to be able to extrude high viscosity mixtures with low polymeric content. The 5-axes PKM is aimed at obtaining a good surface quality of the deposited work and reducing the need for supports during deposition. After the deposition, the material is de-binded and sintered to nearly the density of the solid material as-cast. The design and kinematics of the machine and especially the PKM table is described in this paper, the main design issues are discussed and some preliminary extrusion and sintering results are presented

    Cementitious and polymeric materials for aerial additive manufacturing

    Get PDF

    Desenvolvimento de um robô com cinemática paralela delta linear para manufatura aditiva aderente a STEP-NC

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2018.Esta dissertação trata do desenvolvimento de um robô com cinemática paralela Delta Linear para Manufatura Aditiva (AM-Additive Manufacturing) e a proposição de um modelo de informação para AM baseado no padrão STEP-NC. AM é considerada como uma tendência da Indústria 4.0, aportando grandes benefícios para o desenvolvimento de novos produtos, incluindo redução do tempo de lançamento ao mercado, liberdade de projeto para manufatura e reduções na cadeia de suprimentos. No entanto, ainda persistem sérios problemas sobre a cadeia digital da AM com o uso de antigos formatos para troca de dados. O formato STL (1987) tem sido usado como padrão “de fato" para troca de dados entre softwares de projeto 3D e sistemas de AM e da mesma forma, os controladores numéricos dos sistemas de AM ainda utilizam o padrão de código G (ISO 6983/1980). Porém esses formatos possuem inconvenientes que os tornam incompatíveis com a ideia de uma cadeia digital de alto nível para AM. O ISO 14649, conhecido como STEP-NC, é agora categorizado como a solução aos problemas de troca de dados em AM. Este trabalho explora o padrão STEP-NC para suportar uma cadeia digital de alto nível para AM. Um modelo de atividade de aplicação usando a nomenclatura IDEF0 e um modelo de referência de aplicação na linguagem EXPRESS são apresentados e o conceito de AM-layer-feature é introduzido para referenciar features de AM dentro do modelo EXPRESS. A arquitetura de uma plataforma de AM com controle STEP-NC indireto para implementação do novo modelo também é apresentada. Em paralelo a dissertação apresenta o projeto, análise cinemática e síntese dimensional de uma nova estrutura de robô paralelo Delta Linear com pares cinemáticos constituídos por 12 elos (3 hastes paralelas simples), 11 juntas rotacionais e 3 juntas prismáticas, diferindo da solução clássica constituída por 9 elos (3 hastes paralelas compostas), 12 juntas esféricas e 3 juntas prismáticas. A cinemática direta e inversa é apresentada, bem como um método de otimização baseada em algoritmos genéticos para determinar os valores mínimos para os parâmetros cinemáticos do robô em função de uma espaço de trabalho cilíndrico prescrito com 250 mm de diâmetro e uma altura de 300 mm. O robô Delta Linear baseado na nova estrutura foi construído e testado. Uma análise de capacidade e desvios geométricos foi realizada para três peças de teste com um resultado de desvio/erro de 0,208 mm dentro de um intervalo de confiança de 99,7 %.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).This dissertation aims at the development of a delta robot with a new kinematic chain for application in Additive Manufacturing (AM) and the proposition of an information model for additive manufacturing STEP-NC. Additive Manufacturing is upheld as one mega-trend from new industrial landscape - Industry 4.0. Massive benefits are promised by AM for development of the new products including reduced time-to-launch, manufacturing design freedom and supply chain improvements. Nevertheless, serious problems persist on AM digital chain with the use of format old styles for data exchange. The STL (1987) format has been used as the “de facto”standard for data exchange between 3D-design softwares and AM systems. Similarly, numerical controllers of AM systems still use the G-code (ISO 6983/1980) standard. But they have drawbacks that make them incompatible with the idea of a high-level digital chain for AM. ISO 14649, known as STEP-NC, is now trusted as a solution for AM data exchange. This work explores the STEPNC standard to support the AM high-level digital chain and highlights the advantages of such a digital chain. An application activity model using the nomenclature IDEF0 and an application reference model in EXPRESS are presented. The concept of AM-layer-feature is introduced for referencing AM features within of the EXPRESS model. The architecture of a indirect STEP-NC AM platform for implementation of the new model also is presented. After this work presents the design, synthesis, and kinematic analysis of a new structure of the Linear Delta parallel robot with kinematic pairs consisting of 12 links (3 single parallel legs), 3 prismatic joints and 11 revolute joints, differing from the classical solution constituted by 9 links (3 pairs of parallel legs), 12 ball joints and 3 prismatic joints. Direct and inverse kinematics are presented, as well as a genetic algorithm-based optimization method to determine the kinematic pairs and the workspace pairs that the mechanism will have for its application in additive manufacturing using the Fused Deposition Modeling process. After the validation of the design of the new Linear Delta robot topology, which presents a cylindrical workspace with a 250 mm diameter and a 300 mm height, the Linear Delta robot was manufactured and tested. Capability and geometric deviations analysis of the machine were carried out for three test parts resulting in a 0.3 mm deviation/error within a confidence interval of 99.7%

    Thin Wall Structure by Welding

    Get PDF
    Manufacturing of thin wall structure by wire arc additive manufacturing (WAAM) is on the main application of additive manufacturing. 3D-printing technology has significant advantages over traditional milling and machining techniques or welded analogs. Thin wall structure constitutes an essential and growing proportion of engineering construction, within common areas as in structural aerospace and large scale-components. The dissertation utilized a layer-wise production technique known as gas arc tungsten arc welding (GTAW), performed by a programmed KUKA-30 robot. The thesis aspect of welded structures is the degree of how disposable the product is after manufactured, due to the different set of welding parameters. Therefore are an investigation of residual stresses and deformation implemented by different structure geometries. The research includes two practical and analytical experiment tests in addition to an FEA-simulation. The experiments involve; ultrasound measurement by a self-programmed measuring device developed by BiT, calculation due to measured deformation along the welding length and simulation performed in ANSYS. Findings of the methods implicate an estimated value of residual stresses and distortion in the thin wall structure and substrate. Through ten tests of the welding process can the technique of this technology state as slow with frequently sources of error, using the KUKA-30 robot welding system for a certain height. The level of residual stresses depends on the severity of the manufacturing process, which this research confirmed a generally low value along the length of the structural components and base plate due to the parameters developed in this study

    Modeling and simulation of a Stewart platform type parallel structure robot

    Get PDF
    The kinematics and dynamics of a Stewart Platform type parallel structure robot (NASA's Dynamic Docking Test System) were modeled using the method of kinematic influence coefficients (KIC) and isomorphic transformations of system dependence from one set of generalized coordinates to another. By specifying the end-effector (platform) time trajectory, the required generalized input forces which would theoretically yield the desired motion were determined. It was found that the relationship between the platform motion and the actuators motion was nonlinear. In addition, the contribution to the total generalized forces, required at the actuators, from the acceleration related terms were found to be more significant than the velocity related terms. Hence, the curve representing the total required actuator force generally resembled the curve for the acceleration related force. Another observation revealed that the acceleration related effective inertia matrix I sub dd had the tendency to decouple, with the elements on the main diagonal of I sub dd being larger than the off-diagonal elements, while the velocity related inertia power array P sub ddd did not show such tendency. This tendency results in the acceleration related force curve of a given actuator resembling the acceleration profile of that particular actuator. Furthermore, it was indicated that the effective inertia matrix for the legs is more decoupled than that for the platform. These observations provide essential information for further research to develop an effective control strategy for real-time control of the Dynamic Docking Test System

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Additive Manufacturing Process of 3D Polyaniline Transducers via Direct Ink Writing

    Get PDF
    Electroactive polymers exhibit a change in properties, typically size or shape, in response to electrical stimuli. One class of electroactive polymer of particular interest are the conjugated polymers, whose conjugated backbone structure imparts electrical conductivity. However, this structure imposes processing limitations restricting their form to 2D structures. To overcome this, we develop specially formulated polyaniline- based blends via counter-ion induced thermal doping for the fabrication of 3D conductive structures via direct ink writing. This approach employs multi-material extrusion for the production of structures with passive and active features, rapid device fabrication, and improved design freedom. A model of the thermal doping and extrusion processes is proposed that enables designers to predict the extruded track width and tune process parameters as required. These processes have been applied to the fabrication of both standalone polyaniline-based 3D structures and embedded strain sensors capitalizing on the piezoresistive properties of polyaniline
    corecore