2,853 research outputs found

    Minimalistic SDHC-SPI hardware reader module for boot loader applications

    Get PDF
    This paper introduces a low-footprint full hardware boot loading solution for FPGA-based Programmable Systems on Chip. The proposed module allows loading the system code and data from a standard SD card without having to re-program the whole embedded system. The hardware boot loader is processor independent and removes the need of a software boot loader and the related memory resources. The hardware overhead introduced is manageable, even in low-range FPGA chips, and negligible in mid- and high-range devices. The implementation of the SD card reader module is explained in detail and an example of a multi-boot loader is offered as well. The multi-boot loader is implemented and tested with the Xilinx's Picoblaze microcontroller

    Openwifi : a free and open-source IEEE802.11 SDR implementation on SoC

    No full text
    Open source Software Defined Radio (SDR) project, such as srsLTE and Open Air Interface (OAI), has been widely used for 4G/5G research. However the SDR implementation of the IEEE802.11 (Wi-Fi) is still difficult. The Wi-Fi Short InterFrame Space (SIFS) requires acknowledgement (ACK) packet being sent out in 10μs/16μs(2.4 GHz/5GHz) after receiving a packet successfully, thus the Personal Computer (PC) based SDR architecture hardly can be used due to the latency (≥100μs) between PC and Radio Frequency (RF) front-end. Researchers have to do simulation, hack a commercial chip or buy an expensive reference design to test their ideas. To change this situation, we have developed an open-source full-stack IEEE802.11a/g/n SDR implementation — openwifi. It is based on Xilinx Zynq Systemon-Chip (SoC) that includes Field Programmable Gate Array (FPGA) and ARM processor. With the low latency connection between FPGA and RF front-end, the most critical SIFS timing is achieved by implementing Physical layer (PHY) and low level Media Access Control (low MAC) in FPGA. The corresponding driver is implemented in the embedded Linux running on the ARM processor. The driver instantiates Application Programming Interfaces (APIs) defined by Linux mac80211 subsystem, which is widely used for most SoftMAC Wi-Fi chips. Researchers could study and modify openwifi easily thanks to the modular design. Compared to PC based SDR, the SoC is also a better choice for portable and embedded scenario

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array

    Full text link
    The SST-1M is one of three prototype small-sized telescope designs proposed for the Cherenkov Telescope Array, and is built by a consortium of Polish and Swiss institutions. The SST-1M will operate with DigiCam - an innovative, compact camera with fully digital read-out and trigger electronics. A high level of integration will be achieved by massively deploying state-of-the-art multi-gigabit transmission channels, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server link. Such an approach makes it possible to design the camera to fit the size and weight requirements of the SST-1M exactly, and provide low power consumption, high reliability and long lifetime. The structure of the digital electronics will be presented, along with main physical building blocks and the internal architecture of FPGA functional subsystems.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Implementation Of Modular Testing In Bios Development And Debug

    Get PDF
    This project presents a modular approach in BIOS development in purpose to tackle the problem of long development time with the existing methodologies which are hardware platform approach and virtual platform approach. The proposed approach consists of previous generation platform, a FPGA card and UEFI drivers. The FPGA is loaded with the RTL of one Intellectual Property (IP) from the current company project. The chosen IP is Low Power Subsystem (LPSS). The card is then plugged into the PCI slot of the platform. Besides, UEFI Configuration Driver and UEFI Reset Driver are built to configure and reset the LPSS registers respectively. Both of them are stored into a thumb drive and plugged into USB port of the platform. They are executed in the UEFI Shell environment. In this project, the development time of LPSS needed by the three methodologies which are hardware platform approach, virtual platform approach and modular approach are compared. The results indicate that modular approach is capable to save up to 90% of the development time in comparison with the other two approaches. At the same time, both of the UEFI drivers are functioning correctly. The processing time of both of the UEFI Configuration Driver and UEFI Reset Driver are about 1 to 2 seconds only. In conclusion, the novelty of the modular approach is that the BIOS can be developed in modular basis, without having to develop the BIOS as a whole. Therefore, it is able to cut down the BIOS development time efficientl

    Egret: A platform for reconfigurable system-on-chip

    Get PDF
    Reconfigurable System-on-Chip (rSoC) design is inherently a complex task with enormous freedom in design parameters such as processor, operating system, and backplane buses. Design efficiency can be improved by the use of an rSoC platform which constrains these choices, and allows new designs to leverage much of the expertise of previous designs. Egret is an rSoC prototyping platform being developed at the University of Queensland, Australia, and this paper explains and justifies the design decisions for the first version of Egret
    corecore