626 research outputs found

    Design method for an anthropomorphic hand able to gesture and grasp

    Get PDF
    This paper presents a numerical method to conceive and design the kinematic model of an anthropomorphic robotic hand used for gesturing and grasping. In literature, there are few numerical methods for the finger placement of human-inspired robotic hands. In particular, there are no numerical methods, for the thumb placement, that aim to improve the hand dexterity and grasping capabilities by keeping the hand design close to the human one. While existing models are usually the result of successive parameter adjustments, the proposed method determines the fingers placements by mean of empirical tests. Moreover, a surgery test and the workspace analysis of the whole hand are used to find the best thumb position and orientation according to the hand kinematics and structure. The result is validated through simulation where it is checked that the hand looks well balanced and that it meets our constraints and needs. The presented method provides a numerical tool which allows the easy computation of finger and thumb geometries and base placements for a human-like dexterous robotic hand.Comment: IEEE International Conference on Robotics and Automation, May 2015, Seattle, United States. IEEE, 2015, Proceeding IEEE International Conference on Robotics and Automatio

    Digitalization of musculoskeletal risk assessment in a robotic-assisted assembly workstation

    Get PDF
    The ergonomic assessment of adopted working postures is essential for avoiding musculoskeletal risk factors in manufacturing contexts. Several observational methods based on external analyst observations are available; however, they are relatively subjective and suffer low repeatability. Over the past decade, the digitalization of this assessment has received high research interest. Robotic applications have the potential to lighten workers’ workload and improve working conditions. Therefore, this work presents a musculoskeletal risk assessment before and after robotic implementation in an assembly workstation. We also emphasize the importance of using novel and non-intrusive technologies for musculoskeletal risk assessment. A kinematic study was conducted using inertial motion units (IMU) in a convenience sample of two workers during their normal performance of assembly work cycles. The musculoskeletal risk was estimated according to a semi-automated solution, called the Rapid Upper Limb Assessment (RULA) report. Based on previous musculoskeletal problems reported by the company, the assessment centered on the kinematic analysis of functional wrist movements (flexion/extension, ulnar/radial deviation, and pronation/supination). The results of the RULA report showed a reduction in musculoskeletal risk using robotic-assisted assembly. Regarding the kinematic analysis of the wrist during robotic-assisted tasks, a significant posture improvement of 20–45% was registered (considering the angular deviations relative to the neutral wrist position). The results obtained by direct measurements simultaneously reflect the workload and individual characteristics. The current study highlights the importance of an in-field instrumented assessment of musculoskeletal risk and the limitations of the system applied (e.g., unsuitable for tracking the motion of small joints, such as the fingers)

    Digitalization of musculoskeletal risk assessment in a robotic-assisted assembly workstation

    Get PDF
    The ergonomic assessment of adopted working postures is essential for avoiding musculoskeletal risk factors in manufacturing contexts. Several observational methods based on external analyst observations are available; however, they are relatively subjective and suffer low repeatability. Over the past decade, the digitalization of this assessment has received high research interest. Robotic applications have the potential to lighten workers’ workload and improve working conditions. Therefore, this work presents a musculoskeletal risk assessment before and after robotic implementation in an assembly workstation. We also emphasize the importance of using novel and non-intrusive technologies for musculoskeletal risk assessment. A kinematic study was conducted using inertial motion units (IMU) in a convenience sample of two workers during their normal performance of assembly work cycles. The musculoskeletal risk was estimated according to a semi-automated solution, called the Rapid Upper Limb Assessment (RULA) report. Based on previous musculoskeletal problems reported by the company, the assessment centered on the kinematic analysis of functional wrist movements (flexion/extension, ulnar/radial deviation, and pronation/supination). The results of the RULA report showed a reduction in musculoskeletal risk using robotic-assisted assembly. Regarding the kinematic analysis of the wrist during robotic-assisted tasks, a significant posture improvement of 20–45% was registered (considering the angular deviations relative to the neutral wrist position). The results obtained by direct measurements simultaneously reflect the workload and individual characteristics. The current study highlights the importance of an in-field instrumented assessment of musculoskeletal risk and the limitations of the system applied (e.g., unsuitable for tracking the motion of small joints, such as the fingers).This work was supported by NORTE-06-3559-FSE-000018, integrated in the invitation NORTE-59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF). This work was also supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Anthropomorphically Inspired Design of a Tendon-Driven Robotic Prosthesis for Hand Impairments

    Get PDF
    This thesis presents the design of a robotic prosthesis, which mimics the morphology of a human hand. The primary goal of this work is to develop a systematic methodology that allows a custom-build of the prosthesis to match the specific requirements of a person with hand impairments. Two principal research questions are addressed toward this goal: 1) How do we cater to the large variation in the distribution of overall hand-sizes in the human population? 2) How closely do we mimic the complex morphological aspects of a biological hand in order to maximize the anthropomorphism (human-like appearance) of the robotic hand, while still maintaining a customizable and manageable design? This design approach attempts to replicate the crucial morphological aspects in the artificial hand (the kinematic structure of the hand skeleton, the shape and aspect ratios of various bone-segments, and ranges of motion). The hand design is partitioned into two parts: 1) A stiff skeleton structure, comprising parametrically synthesized segments that are simplified counterparts of nineteen bone-segments—five metacarpals, five proximal phalanges, four middle phalanges, and five distal phalanges—of the natural hand-skeleton and simplified mechanical substitutes of the remaining eight carpal bones. 2) A soft skin-like structure that encompasses the artificial skeleton to match the cosmetics and compliant features of the natural hand. A parameterized CAD model representation of each synthesized segment is developed by using the feature of design-tables in SolidWorks, which allows easy customization with respect to each person. Average hand measurements available in the literature are used to guide the dimensioning of parameters of each synthesized segment. Tendon-driven actuation of the fingers allows the servo actuators to be mounted remotely, thereby enabling a sleek finger design. A prototype of the robotic hand is constructed by 3D-printing all the parts using an Object 30 Prime 3D printer. Results reported from physical validation experiments of the robotic hand demonstrate the feasibility of the proposed design approach

    Sistemas de rehabilitación para la muñeca: una revisión centrada en el traumatismo de la articulación cúbito-radio

    Get PDF
    In the performance of repetitive tasks or excessive use of electronic devices frequent conditions of the main nerves of the hand occur. At this article highlights the results obtained from a documentary research that establishes a state of the art of wrist rehabilitation systems, focused on injuries or traumas of the cubic-radius joint. After categorizing and subcategorizing the topic, different databases are used to determine the indexed sources of information that at the Latin American and Colombian levels have explained it in the last decade. Based on the above and the corresponding interpretation, we propose a metacarpal rehabilitation system -for the Colombian context- which allows to carry out exercises, store relevant information about the use of the device and consult the records both in a cellular application and on a computer. It is shown that the system has adequate performance, but that, however, it needs to be clinically validated.En la realización de tareas repetitivas o uso excesivo de dispositivos electrónicos se presentan frecuentes afecciones de los nervios principales de la mano. En el presente artículo se evidencian los resultados obtenidos de una investigación documental que establece un estado del arte de los sistemas de rehabilitación para la muñeca, enfocados a lesiones o traumas de la articulación cúbito-radio. Luego de categorizar y subcategorizar la temática, se utilizan diferentes bases de datos para determinar las fuentes indexadas de información que a nivel latinoamericano y colombiano la han explicado en la última década. Con base en lo anterior y en la correspondiente interpretación, se propone un sistema de rehabilitación metacarpiana -para el contexto colombiano- el cual permite llevar a cabo ejercicios, almacenar información relevante del uso del dispositivo y consultar los registros tanto en una aplicación de celular como en un computador. Se muestra que el sistema tiene un desempeño adecuado, pero que, sin embargo, requiere ser validado clínicamente

    Developing a Testing Instrument to Evaluate the Performance Of 3D-Printed Body-Powered Prosthetic Hands

    Get PDF
    A 3D printed prosthetic hand is an open source technology that became a good substitution for many products in the market. For many reasons, Low-cost, easy made / easy build. As an open source product, 3D printed prosthetic designs are available to anyone around the world, a good option for young children because they need to have a new prosthetic more frequent until they reach the adulthood age. Most families cannot pay a thousand dollars technology. From the research, it found that that there are not enough studies cover the open source wrist body-powered prosthetic. Other studies covered products used by adults which more physical ability than young children. Other studies covered a body-powered prosthetic that needs fewer efforts to run the wrist-powered prosthetic. To develop or design a product it is essential to have the correct, valid information and data to develop the product. A quantitative data provides a realistic assessment for the prosthetic efficiency. The study aims to design the electrical circuit for a group of sensors that will be used to collect the pressure force to compare it with the applied force. The author success to detect signal form four sensors circuit. The author also provides a design for sliding motor plate to maintain the torque from the stepper motor to mechanical part of the robotic wrist

    Physical ergonomic improvement and safe design of an assembly workstation through collaborative robotics

    Get PDF
    One of the key interesting features of collaborative robotic applications is the potential to lighten the worker workload and potentiate better working conditions. Moreover, developing robotics applications that meets ergonomic criteria is not always a straightforward endeavor. We propose a framework to guide the safe design and conceptualization of ergonomic-driven collaborative robotics workstations. A multi-disciplinary approach involving robotics and ergonomics and human factors shaped this methodology that leads future engineers through the digital transformation of a manual assembly (with repetitive and hazardous operations) to a hybrid workstation, focusing on the physical ergonomic improvement. The framework follows four main steps, (i) the characterization of the initial condition, (ii) the risk assessment, (iii) the definition of requirements for a safe design, and (iv) the conceptualization of the hybrid workstation with all the normative implications it entails. We applied this methodology to a case study in an assembly workstation of a furniture manufacturing company. Results show that the methodology adopted sets an adequate foundation to accelerate the design and development of new human-centered collaborative robotic workstations.This work has been supported by NORTE-06-3559-FSE-000018, integrated in the invitation NORTE-59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF)

    Optimizing the structure and movement of a robotic bat with biological kinematic synergies

    Get PDF
    In this article, we present methods to optimize the design and flight characteristics of a biologically inspired bat-like robot. In previous, work we have designed the topological structure for the wing kinematics of this robot; here we present methods to optimize the geometry of this structure, and to compute actuator trajectories such that its wingbeat pattern closely matches biological counterparts. Our approach is motivated by recent studies on biological bat flight that have shown that the salient aspects of wing motion can be accurately represented in a low-dimensional space. Although bats have over 40 degrees of freedom (DoFs), our robot possesses several biologically meaningful morphing specializations. We use principal component analysis (PCA) to characterize the two most dominant modes of biological bat flight kinematics, and we optimize our robot’s parametric kinematics to mimic these. The method yields a robot that is reduced from five degrees of actuation (DoAs) to just three, and that actively folds its wings within a wingbeat period. As a result of mimicking synergies, the robot produces an average net lift improvesment of 89% over the same robot when its wings cannot fold
    • …
    corecore