8,038 research outputs found

    Mobile forensic triage for damaged phones using M_Triage

    Get PDF
    Mobile forensics triage is a useful technique in a digital forensics investigation for recovering lost or purposely deleted and hidden files from digital storage. It is particularly useful, especially when solving a very sensitive crime, for example, kidnapping, in a timely manner. However, the existing mobile forensics triage tools do not consider performing a triage examination on damaged mobile phones. This research addressed the issues of performing triage examination on damaged Android mobile phones and reduction of false positive result generated by the current mobile forensics triage tools. Furthermore, the research addressed the issues of ignoring possible evidence residing in a bad block memory location. In this research a new forensics triage tool called M_Triage was introduced by extending Decode’s framework to handle data retrieval challenges on damaged Android mobile phones. The tool was designed to obtain evidence quickly and accurately (i.e. valid address book, call logs, SMS, images, and, videos, etc.) on Android damaged mobile phones. The tool was developed using C#, while back end engines was done using C programming and tested using five data sets. Based on the computational time processing comparison with Dec0de, Lifter, XRY and Xaver, the result showed that there was 75% improvement over Dec0de, 36% over Lifter, 28% over XRY and finally 71% over Xaver. Again, based on the experiment done on five data sets, M_Triage was capable of carving valid address book, call logs, SMS, images and videos as compared to Dec0de, Lifter, XRY and Xaver. With the average improvement of 90% over DEC0DE, 30% over Lifter, 40% over XRY and lastly 61% over Xaver. This shows that M_Triage is a better tool to be used because it saves time, carve more relevant files and less false positive result are achieved with the tool

    Mobile forensic triage for damaged phones using M_Triage

    Get PDF
    Mobile forensics triage is a useful technique in a digital forensics investigation for recovering lost or purposely deleted and hidden files from digital storage. It is particularly useful, especially when solving a very sensitive crime, for example, kidnapping, in a timely manner. However, the existing mobile forensics triage tools do not consider performing a triage examination on damaged mobile phones. This research addressed the issues of performing triage examination on damaged Android mobile phones and reduction of false positive result generated by the current mobile forensics triage tools. Furthermore, the research addressed the issues of ignoring possible evidence residing in a bad block memory location. In this research a new forensics triage tool called M_Triage was introduced by extending Decode’s framework to handle data retrieval challenges on damaged Android mobile phones. The tool was designed to obtain evidence quickly and accurately (i.e. valid address book, call logs, SMS, images, and, videos, etc.) on Android damaged mobile phones. The tool was developed using C#, while back end engines was done using C programming and tested using five data sets. Based on the computational time processing comparison with Dec0de, Lifter, XRY and Xaver, the result showed that there was 75% improvement over Dec0de, 36% over Lifter, 28% over XRY and finally 71% over Xaver. Again, based on the experiment done on five data sets, M_Triage was capable of carving valid address book, call logs, SMS, images and videos as compared to Dec0de, Lifter, XRY and Xaver. With the average improvement of 90% over DEC0DE, 30% over Lifter, 40% over XRY and lastly 61% over Xaver. This shows that M_Triage is a better tool to be used because it saves time, carve more relevant files and less false positive result are achieved with the tool

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO3 capacitor as extended gate

    Get PDF
    This work presents Poly(vinylidene fluoride – trifluoroethylene))/Barium Titanate (P(VDF-TrFE)-BT) nanocomposite based touch sensors tightly coupled with MOSFET devices in extended gate configuration. The P(VDF-TrFE)-BT nanocomposite exploits the distinct piezo and pyroelectric properties of P(VDF-TrFE) polymer matrix and BT fillers to suppress the temperature response when force and temperature are varied simultaneously. The reasons for this unique feature have been established through structural and electrical characterization of nanocomposite. The proposed touch sensor was tested over a wide range of force/pressure (0-4N)/(0-364 Pa) and temperature (26-70°C) with almost linear response. The sensitivity towards force/pressure and temperature sensor are 670 mV/N/7.36 mV/Pa and 15.34 mV/°C respectively. With this modified touch sensing capability, the proposed sensors will open new direction for tactile sensing in robotic applications

    A Soft Tactile Sensor Based on Magnetics and Hybrid Flexible-Rigid Electronics

    Get PDF
    Tactile sensing is crucial for robots to manipulate objects successfully. However, integrating tactile sensors into robotic hands is still challenging, mainly due to the need to cover small multi-curved surfaces with several components that must be miniaturized. In this paper, we report the design of a novel magnetic-based tactile sensor to be integrated into the robotic hand of the humanoid robot Vizzy. We designed and fabricated a flexible 4 × 2 matrix of Si chips of magnetoresistive spin valve sensors that, coupled with a single small magnet, can measure contact forces from 0.1 to 5 N on multiple locations over the surface of a robotic fingertip; this design is innovative with respect to previous works in the literature, and it is made possible by careful engineering and miniaturization of the custom-made electronic components that we employ. In addition, we characterize the behavior of the sensor through a COMSOL simulation, which can be used to generate optimized designs for sensors with different geometries

    Study to design and develop remote manipulator system

    Get PDF
    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance

    Microfabricated pressure and shear stress sensors

    Get PDF
    A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate
    • …
    corecore