1 research outputs found

    Evaluation of Precipitation Estimates by at-Launch Codes of GPM/DPR Algorithms Using Synthetic Data from TRMM/PR Observations

    Get PDF
    The Global Precipitation Measurement (GPM) Core Observatory will carry a Dual-frequency Precipitation Radar (DPR) consisting of a Ku-band precipitation radar (KuPR) and a Ka-band precipitation radar (KaPR). In this study, \u27at-launch\u27 codes of DPR precipitation algorithms, which will be used in GPM ground systems at launch, were evaluated using synthetic data based upon the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. Results from the codes (Version 4.20131010) of the KuPR-only, KaPR-only, and DPR algorithms were compared with \u27true values\u27 calculated based upon drop size distributions assumed in the synthetic data and standard results from the TRMM algorithms at an altitude of 2 km over the ocean. The results indicate that the total precipitation amounts during April 2011 from the KuPR and DPR algorithms are similar to the true values, whereas the estimates from the KaPR data are underestimated. Moreover, the DPR estimates yielded smaller precipitation rates for rates less than about 10 mm/h and greater precipitation rates above 10 mm/h. Underestimation of the KaPR estimates was analyzed in terms of measured radar reflectivity ({\bf Z}-{\bf m}) of the KaPR at an altitude of 2 km. The underestimation of the KaPR data was most pronounced during strong precipitation events of {\bf Z}-{\bf m} \lt {\bf 18}~{\bf dBZ} (high attenuation cases) over heavy precipitation areas in the Tropics, whereas the underestimation was less pronounced when the {\bf Z}-{\bf m}\gt 26~{\bf dBZ} (moderate attenuation cases). The results suggest that the underestimation is caused by a problem in the attenuation correction method, which was verified by the improved codes
    corecore