567 research outputs found

    Development of non-invasive biochemical device for monitoring the Lithium level from saliva for bipolar disorder patients

    Get PDF
    This research aims at developing low cost portable proactive healthcare technologies to put more control into the hands of patients especially who have mental illness so that the earliest signs of health problems with medications can be detected and corrected. Monitoring prescription drugs such as lithium, clozapine etc is important for safe guarding the well-being of the bipolar sufferers. Therapeutically useful amounts of lithium (~ 0.6 to 1.2 mmol/L) are only slightly lower than toxic amounts (>1.5 mmol/L), so the concentration of lithium must be carefully monitored during treatment to avoid toxicity. A very sensitive analytical method was proposed for the spectrofluorimetric determination of lithium base on its reaction with 1,4- dihydroxyanthraquinone (Quinizarin). The fluorescence is measured at an excitation wavelength of 590 nm and emission wavelength of 620 nm. Saliva sample was tested using the proposed portable device in order to validate the feasibility of saliva as a sample to detect lithium ions. Calibration results presented that linear range of detection was 0.25 mM ~ 6.0 mM of Li+ in saliva with R2=0.99. The range of detection covers sufficiently the therapeutic range of lithium drugs

    A novel electrochemical sensor for non-invasive monitoring of lithium levels in mood disorders

    Get PDF
    Lithium is the main drug for the treatment of mood disorders. Due to its narrow therapeutic window, Therapeutic Drug Monitoring (TDM) is a norm during therapy in order to avoid adverse effects. Consequently, patients are obliged to frequent check-ups in hospitals to determine their serum concentration and optimize accordingly the drug dose. Wearable sensors have attracted a growing interest in the research community in recent years owing to their promising impact in personalized healthcare. In particular, sweat diagnosis has seen an enormous expansion and is currently entering the market thanks to the large availability and simple collection of this fluid. In this paper a novel approach for non-invasive decentralized monitoring of lithium drug concentration through sweat analysis is proposed for the first time. An all-solid-state Ion- Selective Electrode (ISE) with a nanostructured Solid-Contact (SC) is used to detect lithium ions in sweat. The sensor offers near-Nernstian behaviour (57.6±2.1 mV/decade) in the concentration range of interest. In addition, it shows fast response (15-30 s), good reversibility and small potential drift over time. A wide pH stability window (pH 4-12) is also proved

    Complexity index from a personalized wearable monitoring system for assessing remission in mental health

    Get PDF
    This study discusses a personalized wearable monitoring system, which provides information and communication technologies to patients with mental disorders and physicians managing such diseases. The system, hereinafter called the PSYCHE system, is mainly comprised of a comfortable t-shirt with embedded sensors, such as textile electrodes, to monitor electrocardiogram-heart rate variability (HRV) series, piezoresistive sensors for respiration activity, and triaxial accelerometers for activity recognition. Moreover, on the patient-side, the PSYCHE system uses a smartphone-based interactive platform for electronic mood agenda and clinical scale administration, whereas on the physician-side provides data visualization and support to clinical decision. The smartphone collects the physiological and behavioral data and sends the information out to a centralized server for further processing. In this study, we present experimental results gathered from ten bipolar patients, wearing the PSYCHE system, with severe symptoms who exhibited mood states among depression (DP), hypomania(HM), mixed state (MX), and euthymia (EU), i.e., the good affective balance. In analyzing more than 400 h of cardiovascular dynamics, we found that patients experiencing mood transitions from a pathological mood state (HM, DP, or MX - where depressive and hypomanic symptoms are simultaneously present) to EU can be characterized through a commonly used measure of entropy. In particular, the SampEn estimated on long-term HRV series increases according to the patients' clinical improvement. These results are in agreement with the current literature reporting on the complexity dynamics of physiological systems and provides a promising and viable support to clinical decision in order to improve the diagnosis and management of psychiatric disorders

    Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder

    Get PDF
    Since the mid-20th century, lithium continues to be prescribed as a first-line mood stabilizer for the management of bipolar disorder (BD). However, lithium has a very narrow therapeutic index, and it is crucial to carefully monitor lithium plasma levels as concentrations greater than 1.2 mmol/L are potentially toxic and can be fatal. The quantification of lithium in clinical laboratories is performed by atomic absorption spectrometry, flame emission photometry, or conventional ion-selective electrodes. All these techniques are cumbersome and require frequent blood tests with consequent discomfort which results in patients evading treatment. Furthermore, the current techniques for lithium monitoring require highly qualified personnel and expensive equipment; hence, it is crucial to develop low-cost and easy-to-use devices for decentralized monitoring of lithium. The current paper seeks to review the pertinent literature rigorously and critically with a focus on different lithium-monitoring techniques which could lead towards the development of automatic and point-of-care analytical devices for lithium determination
    corecore