6,028 research outputs found

    Mars aqueous chemistry experiment

    Get PDF
    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed

    Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide

    Get PDF
    We demonstrate a nonintrusive optical method for microfluidic detection and analysis based on evanescent wave sensing. The device consists of a planar thin-film waveguide integrated with a microfluidic chip for directed surface flow. Microliter droplets are electronically transported and positioned over the waveguide surface by thermocapillary actuation. The attenuated intensity of propagating modes is used to detect droplet location, to monitor dye concentration in aqueous solutions, and to measure reaction rates with increasing surface temperature for a chromogenic biochemical assay. This study illustrates a few of the capabilities possible by direct integration of optical sensing with surface-directed fluidic devices

    Design and fabrication of PCR chip with integrated dielectrophoretic based sample pretreatment

    Get PDF

    Biological Particle Control and Separation using Active Forces in Microfluidic Environments

    Get PDF
    Exploration of active manipulation of bioparticles has been impacted by the development of micro-/nanofluidic technologies, enabling evident observation of particle responses by means of applied tunable external force field, namely, dielectrophoresis (DEP), magnetophoresis (MAG), acoustophoresis (ACT), thermophoresis (THM), and optical tweezing or trapping (OPT). In this chapter, each mechanism is presented in brief yet concise, for broad range of readers, as strong foundation for amateur as well as brainstorming source for experts. The discussion covers the fundamental mechanism that underlying the phenomenon, presenting the theoretical and schematic description; how the response being tuned; and utmost practical, the understanding by specific implementation into bioparticles manipulation engaging from micron-sized material down to molecular level particles

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    CMOS Circuits and Systems for Lab‐on‐a‐Chip Applications

    Get PDF
    Complementary metal oxide semiconductor (CMOS) technology allows the functional integration of sensors, signal conditioning, processing circuits and development of fully electronic integrated lab‐on‐a‐chip. On the other hand, lab‐on‐a‐chip is a technology which changed the traditional way by which biological samples are inspected and tested in laboratories. A lab‐on‐a‐chip consists of four main parts: sensing, actuation, readout circuit and microfluidic chamber. Lab‐on‐a‐chip gives the promise of many advantages including better and improved performance, reliability, portability and cost reduction. This chapter reviews the currently used lab‐on‐a‐chips based on CMOS technology. Also, this chapter presents and discusses the features of the existing CMOS based lab‐on‐a‐chips and their applications at the cell level
    • 

    corecore