24 research outputs found

    VIIRS On-Orbit Optical Anomaly - Investigation, Analysis, Root Cause Determination and Lessons Learned

    Get PDF
    A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the lessons learned section of this paper

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF

    CIRA annual report FY 2014/2015

    Get PDF
    Reporting period July 1, 2014-March 31, 2015

    CIRA annual report FY 2013/2014

    Get PDF

    CIRA annual report FY 2015/2016

    Get PDF
    Reporting period April 1, 2015-March 31, 2016

    CIRA annual report FY 2011/2012

    Get PDF

    Atmospheric Research 2014 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 20-year record of peer-reviewed publications and proposals among the various Laboratories. This data shows that the scientific work being conducted in the Laboratories is competitive with the work being done elsewhere in universities and other government agencies. The office of Deputy Director for Atmospheric Research will strive to maintain this record by rigorously monitoring and promoting quality while emphasizing coordination and integration among atmospheric disciplines. Also, an appropriate balance will be maintained between the scientists' responsibility for large collaborative projects and missions and their need to carry out active science research as a principal investigator. This balance allows members of the Laboratories to improve their scientific credentials, and develop leadership potentials. Interdisciplinary research is carried out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other government agencies. Members of the Laboratories interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratories raise the public's awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Atmosphere Laboratories make substantial efforts to attract and recruit new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA's mission, provides highlights of our research scope and activities, and summarizes our scientists' major accomplishments during calendar year 2014. The composition of the organization is shown in Figure 1.2 for each code. This report is published in a printed version with an electronic version on our atmospheres Web site, http://atmospheres.gsfc.nasa.gov/

    PACE Technical Report Series, Volume 5: Mission Formulation Studies

    Get PDF
    This chapter summarizes the mission architecture for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, ranging from its scientific rationale to the history of its realized conception to itspresent-day organization and management. This volume in the PACE Technical Report series focuses ontrade studies that informed the formulation of the mission in its pre-Phase A (2014-2016; pre-formulation:define a viable and affordable concept) and Phase A (2016-2017; concept and technology development).With that in mind, this chapter serves to introduce the mission by providing: a brief summary of thescience drivers for the mission; a history of the direction of the mission to NASA's Goddard Space Flight Center (GSFC); a synopsis of the mission's and instruments' management and development structures; and a brief description of the primary components and elements that form the foundation ofthe mission, encompassing the major mission segments (space, ground, and science data processing) and their roles in integration, testing, and operations

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution
    corecore