98 research outputs found

    Design and Control of Flapping Wing Micro Air Vehicles

    Get PDF
    Flapping wing Micro Air Vehicles (MAVs) continues to be a growing field, with ongoing research into unsteady, low Re aerodynamics, micro-fabrication, and fluid-structure interaction. However, research into flapping wing control of such MAVs continues to lag. Existing research uniformly consists of proposed control laws that are validated by computer simulations of quasi-steady blade-element formulae. Such simulations use numerous assumptions and cannot be trusted to fully describe the flow physics. Instead, such control laws must be validated on hardware. Here, a novel control technique is proposed called Bi-harmonic Amplitude and Bias Modulation (BABM) which can generate forces and moments in 5 vehicle degrees of freedom with only two actuators. Several MAV prototypes were designed and manufactured with independently controllable wings capable of prescribing arbitrary wing trajectories. The forces and moments generated by a MAV utilizing the BABM control technique were measured on a 6-component balance. These experiments verified that a prototype can generate uncoupled forces and moments for motion in five degrees of freedom when using the BABM control technique, and that these forces can be approximated by quasi-steady blade-element formulae. Finally, the prototype performed preliminary controlled flight in constrained motion experiments, further demonstrating the feasibility of BABM

    The Characterization of Material Properties and Structural Dynamics of the Manduca Sexta Forewing for Application to Flapping Wing Micro Air Vehicle Design

    Get PDF
    The Manduca Sexta species of moth serves as a source of biological inspiration for the future of micro air vehicle flapping flight. The ability of this species to hover in flapping flight has warranted investigation into the critical material, structural, and geometric properties of the forewing of this biological specimen. A rigorous morphological study of the Manduca Sexta forewing was conducted to characterize the physical and material properties of the biological forewing for the purpose of developing an advanced parametric three dimensional model finite element analysis (FEA) model. This FEA model was tuned to match the experimentally determined structural dynamics of the biological specimen and serves as the basis for an engineered wing design. Manufacturing methods are developed and implemented to fabricate the baseline engineered wing design. Biological wings and engineered wings are experimentally tested to determine the aerodynamic lift production of each of wings under the same boundary conditions. Through this research, a structural dynamics based engineering methodology has been used to design, develop, and identify biomimetic engineered wings that experimentally produce aerodynamic forces equivalent to their biological analog

    In-Mold Assembly of Multi-Functional Structures

    Get PDF
    Combining the recent advances in injection moldable polymer composites with the multi-material molding techniques enable fabrication of multi-functional structures to serve multiple functions (e.g., carry load, support motion, dissipate heat, store energy). Current in-mold assembly methods, however, cannot be simply scaled to create structures with miniature features, as the process conditions and the assembly failure modes change with the feature size. This dissertation identifies and addresses the issues associated with the in-mold assembly of multi-functional structures with miniature components. First, the functional capability of embedding actuators is developed. As a part of this effort, computational modeling methods are developed to assess the functionality of the structure with respect to the material properties, process parameters and the heat source. Using these models, the effective material thermal conductivity required to dissipate the heat generated by the embedded small scale actuator is identified. Also, the influence of the fiber orientation on the heat dissipation performance is characterized. Finally, models for integrated product and process design are presented to ensure the miniature actuator survivability during embedding process. The second functional capability developed as a part of this dissertation is the in-mold assembly of multi-material structures capable of motion and load transfer, such as mechanisms with compliant hinges. The necessary hinge and link design features are identified. The shapes and orientations of these features are analyzed with respect to their functionality, mutual dependencies, and the process cost. The parametric model of the interface design is developed. This model is used to minimize both the final assembly weight and the mold complexity as the process cost measure. Also, to minimize the manufacturing waste and the risk of assembly failure due to unbalanced mold filling, the design optimization of runner systems used in multi-cavity molds for in-mold assembly is developed. The complete optimization model is characterized and formulated. The best method to solve the runner optimization problem is identified. To demonstrate the applicability of the tools developed in this dissertation towards the miniaturization of robotic devices, a case study of a novel miniature air vehicle drive mechanism is presented

    Characterizing Thrust Performance for Free and Confined Oscillating Cantilevers

    Get PDF
    Although not identical to the motion employed by nature’s swimmers and flyers, the simple harmonic oscillations of cantilever-like structures have been shown to provide efficient low power solutions for applications ranging from thermal management to propulsion. However, in order to quantify their true potential, the resulting flow field and corresponding thrust must be better understood. In this experimental work, thin, flexible cantilevers vibrating in their fundamental mode are analyzed in terms of the flow field produced and the thrust generated. The actuation is achieved via a piezoelectric patch mounted near its base. An oscillating voltage tuned to the first resonance of the structure causes vibrations at the free end of the cantilever. The flow field is experimentally measured using Particle Image Velocimetry (PIV). Two dimensional flow fields are extracted from multiple x-y and y-z planes, and revealed that inward flow occurs upstream as well as above and below the flat face of the cantilever. It was also found that there is a net inward volumetric flow at the corners of the cantilever. Observing the flow off the tip of the fan lead to the finding that the dominant flow velocity occurs not at the center of the fan, but at the midpoints between the center and each edge. The flow field data are primarily used to motivate future geometry, and boundary configurations that could greatly enhance the thrust capabilities of the cantilever by directing the flow downstream in a more effective manner. The thrust produced was experimentally measured using a high resolution scale. Clear trends were observed and correlations developed to help predict the thrust as a function of the operating parameters including the cantilever geometry and vibration amplitude and frequency. Attempts at shaping the flow were investigated by introducing sidewalls on both sides of the oscillating cantilever. The sidewall boundary condition was tested with thrust performance and power consumption in mind, and it was found that the position of the tip on the cantilever in relation to the edge of the sidewall has an effect on power consumption that is dramatic and incongruent with what one would expect. This research provides the critical experimental analysis to gauge the viability of using simple and energy efficient actuation from cantilever-like structures in place of more complicated solutions which attempt to maintain a higher degree of biomimicry

    Engineering for a Changing World: 59th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 11-15, 2017 : programme

    Get PDF
    In 2017, the Ilmenau Scientific Colloquium is again organised by the Department of Mechanical Engineering. The title of this year’s conference “Engineering for a Changing World” refers to limited natural resources of our planet, to massive changes in cooperation between continents, countries, institutions and people – enabled by the increased implementation of information technology as the probably most dominant driver in many fields. The Colloquium, complemented by workshops, is characterised by the following topics, but not limited to them: – Precision Engineering and Metrology – Industry 4.0 and Digitalisation in Mechanical Engineering – Mechatronics, Biomechatronics and Mechanism Technology – Systems Technology – Innovative Metallic Materials The topics are oriented on key strategic aspects of research and teaching in Mechanical Engineering at our university

    IMPROVED PREDICTION OF FLAPPING WING AERIAL VEHICLE PERFORMANCE THROUGH COMPONENT INTERACTION MODELING

    Get PDF
    Flapping wing aerial vehicles offer the promise of versatile performance, however prediction of flapping wing aerial vehicle performance is a challenging task because of complex interconnectedness in vehicle functionality. To address this challenge, performance is estimated by using component-level modeling as a foundation. Experimental characterization of the drive motors, battery, and wings is performed to identify important functional characteristics and enable selection of appropriate modeling techniques. Component-level models are then generated that capture the performance of each vehicle component. Validation of each component-level model shows where errors are eliminated by capturing important dynamic functionality. System-level modeling is then performed by creating linkages between component-level models that have already been individually validated through experimental testing, leading to real-world functional constraints that are realized and correctly modeled at the system level. The result of this methodology is a system-level performance prediction that offers the ability to explore the effects of changing vehicle components as well as changing functional properties, while maintaining computational tractability. Simulated results are compared to experimental flight test data collected with an instrumented flapping wing aerial vehicle, and are shown to offer good accuracy in estimation of system-level performance properties

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence

    ME-EM 2018-19 Annual Report

    Get PDF
    Table of Contents Faculty Research Enrollment & Degrees Department News Graduates Faculty & Staff Alumni Donors Contracts & Grants Patents & Publicationshttps://digitalcommons.mtu.edu/mechanical-annualreports/1000/thumbnail.jp
    • …
    corecore