42 research outputs found

    REALISTIC CADAVER MECHANICAL TESTING & QUANTITATIVE MAGNETIC RESONANCE IMAGING FOR EVALUATING KNEES THROUGHOUT WALKING

    Get PDF
    Introduction: Knees are subjected to daily physical activities, injuries and diseases, such as osteoarthritis (OA). Such complications represent significant costs (billions and thousands of USD/year for countries and individuals, respectively). Moreover, there is no OA cure and its risk factors (obesity, malalignment and injury) affect joints’ mechanical loading. Thus, knees must be studied under realistic loading conditions. Unfortunately, due to joints’ complexity (geometry, mechanical properties and loading), current experimental methods seldom achieve this. Quantitative magnetic resonance imaging (qMRI) potentially offers a non-invasive evaluation of tissue structure, biochemistry and mechanics, thereby facilitating injury or disease tracking if links between these properties and imaging outcomes were well established. However, the connections between tissue health and mechanical properties remain unclear, as is the relation between tissue- and joint-level biomechanics. Objective: Determine if tissue structure and joint function are related in whole cadaver knees under physiologically realistic loading conditions applied via a novel MRI-safe loading device. Methods: A novel MRI-safe knee loading device was designed, built and its repeatability assessed. Physiologic loading conditions (simulating walking) suitable for mechanical tests were determined via musculoskeletal (MSK) modelling, verified and validated against published data, and applied to a cadaver knee. To measure tibio- and patello-femoral (T-F and P-F) contact responses, a pressure sensing system was used in conjunction with the instrumented loading device. Then, to search for T2 relaxation-deformation associations, tibial and patellar cartilage deformations and T2 relaxation responses of other six ex-vivo knees subjected to axial compression (simulating standing) were measured and correlation analyses performed. Results & Discussion: The MRI-safe loading system developed was able to simulate healthy or pathologic gait with adequate repeatability (e.g., 1.23 to 2.91 CV% for compression, comparable to existing simulators), leading to generally consistent contact responses in agreement with published experimental and finite element studies. Cartilage thickness and T2 relaxation time magnitudes measured fell within expected values, while their loading-induced changes agreed with previous studies but exhibited larger variability. Moreover, a moderate negative correlation (r = -0.402, p = 0.019) was found between unloaded tibial cartilage thickness and T2 relaxation time, which may be linked to cartilage composition (relating collagen fibers and water content)

    Development of an In-Vitro Passive and Active Motion Simulator for the Investigation of Shoulder Function and Kinematics

    Get PDF
    Injuries and degenerative diseases of the shoulder are common and may relate to the joint’s complex biomechanics, which rely primarily on soft tissues to achieve stability. Despite the prevalence of these disorders, there is little information about their effects on the biomechanics of the shoulder, and a lack of evidence with which to guide clinical practice. Insight into these disorders and their treatments can be gained through in-vitro biomechanical experiments where the achieved physiologic accuracy and repeatability directly influence their efficacy and impact. This work’s rationale was that developing a simulator with greater physiologic accuracy and testing capabilities would improve the quantification of biomechanical parameters. This dissertation describes the development and validation of a simulator capable of performing passive assessments, which use experimenter manipulation, and active assessments – produced through muscle loading. Respectively, these allow the assessment of functional parameters such as stability, and kinematic/kinetic parameters including joint loading. The passive functionality enables specimen motion to be precisely controlled through independent manipulation of each rotational degree of freedom (DOF). Compared to unassisted manipulation, the system improved accuracy and repeatability of positioning the specimen (by 205% & 163%, respectively), decreased variation in DOF that are to remain constant (by 6.8°), and improved achievement of predefined endpoints (by 21%). Additionally, implementing a scapular rotation mechanism improved the physiologic accuracy of simulation. This enabled the clarification of the effect of secondary musculature on shoulder function, and the comparison of two competing clinical reconstructive procedures for shoulder instability. This was the first shoulder system to use real time kinematic feedback and PID control to produce active motion, which achieved unmatched accuracy ( These developments can be a powerful tool for increasing our understanding of the shoulder and also to provide information which can assist surgeons and improve patient outcomes

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    A Robotic Neuro-Musculoskeletal Simulator for Spine Research

    Get PDF
    An influential conceptual framework advanced by Panjabi represents the living spine as a complex neuromusculoskeletal system whose biomechanical functioning is rather finely dependent upon the interactions among and between three principal subsystems: the passive musculoskeletal subsystem (osteoligamentous spine plus passive mechanical contributions of the muscles), the active musculoskeletal subsystem (muscles and tendons), and the neural and feedback subsystem (neural control centers and feedback elements such as mechanoreceptors located in the soft tissues) [1]. The interplay between subsystems readily encourages thought experiments of how pathologic changes in one subsystem might influence another--for example, prompting one to speculate how painful arthritic changes in the facet joints might affect the neuromuscular control of spinal movement. To answer clinical questions regarding the interplay between these subsystems the proper experimental tools and techniques are required. Traditional spine biomechanical experiments are able to provide comprehensive characterization of the structural properties of the osteoligamentous spine. However, these technologies do not incorporate a simulated neural feedback from neural elements, such as mechanoreceptors and nociceptors, into the control loop. Doing so enables the study of how this feedback--including pain-related--alters spinal loading and motion patterns. The first such development of this technology was successfully completed in this study and constitutes a Neuro-Musculoskeletal Simulator. A Neuro-Musculoskeletal Simulator has the potential to reduce the gap between bench and bedside by creating a new paradigm in estimating the outcome of spine pathologies or surgeries. The traditional paradigm is unable to estimate pain and is also unable to determine how the treatment, combined with the natural pain avoidance of the patient, would transfer the load to other structures and potentially increase the risk for other problems. The novel Neuro-Musculo
    corecore